[1]赵丽娟, 田 震, 郭辰光. 矿用截齿失效形式及对策[J]. 金属热处理, 2015, 40(6): 194-198. Zhao Lijuan, Tian Zhen, Guo Chenguang. Failure modes and countermeasures of a mining pick[J]. Heat Treatment of Metals, 2015, 40(6): 194-198. [2]高 英. 煤矿用截齿失效研究现状及发展趋势[J]. 装备制造技术, 2010(9): 107-109. Gao Ying. Development of cutting picks investigation in coal mine[J]. Equipment Manufacturing Technology, 2010(9): 107-109. [3]孙方红, 马 壮, 董世知. 矿用截齿表面强化技术[J]. 金属热处理, 2011, 36(11): 99-102. Sun Fanghong, Ma Zhuang, Dong Shizhi. Surface strengthening of mining pick[J]. Heat Treatment of Metals, 2011, 36(11): 99-102. [4]胡振南, 张玉堂, 王娜娜. 激光熔覆技术在矿用截齿上的应用[J]. 山东煤炭科技, 2014(8): 95-96. Hu Zhennan, Zhang Yutang, Wang Nana. Laser cladding technology used in picker[J]. Shandong Coal Science and Technology, 2014(8): 95-96. [5]Zou Yun, Chai Yanwei, Wang Dong, et al. Measurement of elastic modulus of laser cladding coatings by laser ultrasonic method[J]. Optics and Laser Technology, 2022, 146: 107567. [6]Shi Yameng, Li Jingbin, Zhang Jie, et al. Effect of La2O3 addition on wear properties of Ni60a/SiC coating using laser-cladding[J]. Optics and Laser Technology, 2022, 148: 107640. [7]张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11. Zhang Jinchao, Shi Shihong, Gong Yanqi, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1-11. [8]崔陆军, 于计划, 郭士锐, 等. 直接输出半导体激光熔覆截齿表面的组织与磨损性能研究[J]. 应用激光, 2019, 39(6): 928-933. Cui Lujun, Yu Jihua, Guo Shirui, et al. Study on microstructure and wear properties of picks coated by direct output semiconductor laser[J]. Applied Laser, 2019, 39(6): 928-933. [9]崔陆军, 于计划, 曹衍龙, 等. 42CrMo钢表面Fe-WC激光熔覆层的组织与性能[J]. 金属热处理, 2020, 45(10): 199-203. Cui Lujun, Yu Jihua, Cao Yanlong, et al. Microstructure and properties of Fe-WC laser clad layer on 42CrMo steel surface[J]. Heat Treatment of Metals, 2020, 45(10): 199-203. [10]苏伦昌, 董春春, 杜学芸, 等. 矿用截齿激光熔覆高耐磨颗粒增强铁基复合涂层的性能研究[J]. 矿山机械, 2014, 42(3): 102-106. Su Lunchang, Dong Chunchun, Du Xueyun, et al. Study on properties of superior wear-resistant laser cladding layer with particle reinforced Fe base for mining picks[J]. Mining and Processing Equipment, 2014, 42(3): 102-106. [11]Feng Yulei, Pang Xiaotong, Feng Kai, et al. Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C, B)[J]. Journal of Materials Research and Technology, 2021, 15: 5597-5607. [12]Wu Sha, Liu Zenghua, Huang Xiaofei, et al. Process parameter optimization and EBSD analysis of Ni60A-25%WC laser cladding[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105675. [13]Huang Yongjun, Zeng Xiaoyan, Hu Qianwu, et al. Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating[J]. Applied Surface Science, 2009, 255(7): 3940-3945. [14]Shabani M, Mazahery A. Prediction of mechanical properties of cast A356 alloy as a function of microstructure and cooling rate[J]. Archives of Metallurgy and Materials, 2011, 56(3): 671-675. [15]周书勤. 硬质合金生产原理的质量控制[M]. 北京: 冶金工业出版社, 2014. [16]张 林, 满田囡, 王恩刚. 弥散固态颗粒对Al-Bi合金液-液相分离过程的影响[J]. 金属学报, 2019, 55(3): 399-409. Zhang Lin, Man Tiannan, Wang Engang. Influence of dispersed solid particles on the liquid-liquid separation process of Al-Bi alloys[J]. Acta Metallurgica Sinica, 2019, 55(3): 399-409. [17]焦咏翔, 邓德伟, 孙 奇, 等. 工艺参数对42CrMo钢激光淬火效果的影响[J]. 金属热处理, 2021, 46(11): 90-96. Jiao Yongxiang, Deng Dewei, Sun Qi, et al. Influence of process parameter on laser quenching effect of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(11): 90-96. [18]甄延波, 秦 俊, 樊 超, 等. 40Cr钢齿条的激光淬火工艺[J]. 金属热处理, 2020, 45(8): 152-155. Zhen Yanbo, Qin Jun, Fan Chao, et al. Laser quenching process of 40Cr steel rack[J]. Heat Treatment of Metals, 2020, 45(8): 152-155. [19]郝文俊, 孙荣禄, 牛 伟, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织及性能[J]. 表面技术, 2021, 50(5): 87-94. Hao Wenjun, Sun Ronglu, Niu Wei, et al. Microstructure and properties of laser cladding CoCrFeNiSix high-entropy alloy coating[J]. Surface Technology, 2021, 50(5): 87-94. |