[1]Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. [2]Shi Leili, Yan Liwang, Shu Xiaoli, et al. Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature[J]. Materials and Design, 2013, 50: 886-892. [3]Li Jianguo, Li Huan, Liang Yu, et al. The microstructure and mechanical properties of multi-strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel[J]. Materials, 2019, 12(18): 2944-2945. [4]Liu Ling, Fan Cuilin, Sun Hongying, et al. Research progress of alumina-forming austenitic stainless steels[J]. Materials, 2022, 15(10): 3515-3516. [5]王 曼. 新型奥氏体钢显微组织结构稳定性及力学性能的研究[D]. 北京: 北京科技大学, 2017. [6]宋耀辉, 李玉贵, 王 顺, 等. 铸态309L不锈钢的热变形行为及热加工图分析[J]. 重型机械, 2020(5): 75-79. SongYaohui, Li Yugui, Wang Shun, et al. Hot deformation behavior and hot working diagram analysis of as-cast 309L stainless steel[J]. Heavy Machinery, 2020(5): 75-79. [7]Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use[J]. JOM, 2008, 60(7): 12-18. [8]Weber L, Uggowitzer P J. Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content[J]. Materials Science and Engineering A, 1998, 242(1/2): 222-229. [9]王耘涛, 布茂东. 低镍和无镍奥氏体不锈钢的研究现状及进展[J]. 金属热处理, 2013, 38(1): 15-20. Wang Yuntao, Bu Maodong. Current status and progress of research on low-nickel and nickel-free austenitic stainless steels[J]. Heat Treatment of Metals, 2013, 38(1): 15-20. [10]Behjati P, Kermanpur A, Najafizadeh A, et al. Design of a new Ni-free austenitic stainless steel with unique ultrahigh strength-high ductility synergy[J]. Materials and Design, 2014, 63: 500-507. [11]Moon J, Lee T H, Shin J H, et al. Hot working behavior of a nitrogen-alloyed Fe-18Mn-18Cr-N austenitic stainless steel[J]. Materials Science and Engineering A, 2014, 594: 302-308. [12]丁浩晨, 赵艳君, 韦宗繁, 等. 基于3D热加工图的节镍型高锰奥氏体不锈钢的热变形特性[J]. 稀有金属材料与工程, 2022, 51(7): 2608-2616. Ding Haochen, Zhao Yanjun, Wei Zongfan, et al. Heat deformation characteristics of nickel-sparing high manganese austenitic stainless steels based on 3D thermal processing diagrams[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2608-2616. [13]Han Ying, Wu Hua, Zhang Wei, et al. Constitutive equation and dynamic recrystallization behavior of as-cast 254SMO super-austenitic stainless steel[J]. Materials and Design, 2015, 69: 230-240. [14]曾泽瑶, 杨银辉, 曹建春, 等. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究 [J]. 材料导报, 2021, 35(18): 18163-18169, 18189. Zeng Zeyao, Yang Yinhui, Cao Jianchun, et al. Study on the hot compression recrystallization behavior of 18Cr-3Mn-1Ni-0.22N low nickel type duplex stainless steel [J]. Materials Reports, 2021, 35(18): 18163-18169, 18189. [15]Wu Zhiqiang, Tang Yubo, Chen Wei, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map[J]. Vacuum, 2018, 159: 447-455. [16]张晓琳, 姜超平, 赵 东, 等. Ti-6Al-7Nb合金高温塑性变形行为及热加工图研究[J]. 稀有金属材料与工程, 2022, 51(1): 174-182. Zhang Xiaolin, Jiang Chaoping, Zhao Dong, et al. Study on the high temperature plastic deformation behaviour and hot working diagram of Ti-6Al-7Nb alloy[J]. Rare Metal Materials and Engineering, 2022, 51(1): 174-182. [17]储昭杰, 李 波, 王文浩, 等. 6061铝合金热变形行为及动态再结晶[J]. 稀有金属材料与工程, 2021,50(7): 2502-2510. Chu Zhaojie, Li Bo, Wang Wenhao, et al. Heat deformation behavior and dynamic recrystallization of 6061 aluminum alloy[J]. Rare Metal Materials and Engineering, 2021, 50(7): 2502-2510. [18]李 娟, 陈慧琴, 赵广辉, 等. 含铜3.6%抗菌奥氏体不锈钢的热变形行为研究[J]. 热加工工艺, 2018, 47(23): 25-29. Li Juan, Chen Huiqin, Zhao Guanghui, et al. Study of the thermal deformation behaviour of antimicrobial austenitic stainless steels containing 3.6% copper[J]. Hot Working Technology, 2018, 47(23): 25-29. [19]王晋斌, 郝润元, 李华英, 等. Fe5Mn3Al中锰汽车用钢热变形本构方程的研究[J]. 材料与冶金学报, 2019, 18(3): 219-225. Wang Jinbin, Hao Runyuan, Li Huaying, et al. Study of the principal equations of heat deformation of Fe5Mn3Al medium manganese automotive steels[J]. Journal of Materials and Metallurgy, 2019, 18(3): 219-225. [20]赵广辉, 黄庆学, 周存龙, 等. 15CrMoR钢热变形本构方程的研究[J]. 热加工工艺, 2016, 45(5): 1-6. Zhao Guanghui, Huang Qingxue, Zhou Cunlong, et al. Study of the principal structure equations for thermal deformation of 15CrMoR steel[J]. Hot Working Technology, 2016, 45(5): 1-6. [21]Song Yaohui, Wang Shun, Zhao Guanghui, et al. Hot deformation behavior and microstructural evolution of 2205 duplex stainless steel[J]. Materials Research Express, 2020, 7(4): 20-33. [22]孙 挺, 闫永明, 何肖飞, 等. Cr-Mo-B系机械工程用钢高温流变行为及热加工图[J]. 材料工程, 2019, 47(9): 55-60. Sun Ting, Yan Yongming, He Xiaofei, et al. High temperature rheological behaviour and hot working diagrams of Cr-Mo-B series steels for mechanical engineering[J]. Journal of Materials Engineering, 2019, 47(9): 55-60. [23]Ying Han, Guiwu Liu, Dening Zou, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression[J]. Materials Science and Engineering A, 2013, 565(3): 342-350. [24]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering A, 2009, 500(1/2): 114-121. [25]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [26]Zhao Yanjun, Ding Haochen, Cao Yunfei, et al. Hot processing map of an Al-4.30 Mg alloy under high one-pass deformation[J]. Metals, 2021, 11(2): 347-348. [27]Wu Han, Wen Shuxian, Huang Hai, et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy[J]. Journal of Alloys and Compounds, 2016, 685: 869-880. [28]Xi Shiping, Gao Xinliang, Liu Wei, et al. Hot deformation behavior and processing map of low-alloy offshore steel[J]. Journal of Iron and Steel Research International, 2022, 29(3): 10-11. [29]Qiao Ling, Deng Yong, Liao Mingqing, et al. Modelling and prediction of thermal deformation behaviors in a pearlitic steel[J]. Materials Today Communications, 2020, 25(12): 101134-101135. |