[1]彭孝仁. 我国汽车行业用钢市场分析[J]. 冶金经济与管理, 2021(6): 26-28. [2]Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application[J]. Materials Science and Engineering A, 2013, 561: 394-402. [3]Xia P, Vercruysse F, Petrov R, et al. High strain rate tensile behavior of a quenching and partitioning (Q&P) Fe-0.25C-1.5Si-3.0Mn steel[J]. Materials Science and Engineering A, 2019, 745: 53-62. [4]王亚东, 刘宏亮, 王亚芬, 等. Q&P钢的研究现状及前景展望[J]. 金属世界, 2018(3): 18-21. Wang Yadong, Liu Hongliang, Wang Yafen, et al. Research status and prospects of Q&P steel[J]. Metal World, 2018(3): 18-21. [5]蒋浩民, 陈新平, 蔡 宁, 等. 汽车车身用钢的发展趋势[J]. 锻压技术, 2018, 43(7): 56-61. Jiang Haomin, Chen Xinping, Cai Ning, et al. Development trends of car body steels[J]. Forging and Stamping Technology, 2018, 43(7): 56-61. [6]杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势[J]. 材料导报, 2021, 35(15): 15189-15196, 15204. Du Jinliang, Feng Yunli, Zhang Yinglong. Research status and development trend of new automotive Q&P steel[J]. Materials Reports, 2021, 35(15): 15189-15196, 15204. [7]Kang T, Zhao Z Z, Liang J H, et al. Effect of the austenitizing temperature on the microstructure evolution and mechanical properties of Q&P steel[J]. Materials Science and Engineering A, 2020, 771: 138584. [8]Ennis B L, Jimenez-Melero E, Atzema E H, et al. Metastable austenite driven work-hardening behavior in a TRIP-assisted dual phase steel[J]. International Journal of Plasticity, 2017, 88: 126-139. [9]Han H N, Lee C G, Suh D W, et al. A microstructure-based analysis for transformation induced plasticity and mechanically induced martensitic transformation[J]. Materials Science and Engineering A, 2008, 485(1/2): 224-233. [10]王 滨. ASTM金属材料拉伸试验方法介绍[J]. 理化检验(物理分册), 2004, 40(10): 528-532. Wang Bin. Brief introduction of tension test specimen of metallic materials of ASTM[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2004, 40(10): 528-532. [11]方贵灵. 先进高强钢的形变诱发增塑机制[D]. 沈阳: 东北大学, 2012. [12]邹 英, 刘华赛, 韩 赟, 等. 基于退火路径的中锰钢组织转变与力学性能[J]. 钢铁, 2022, 57(4): 97-104. Zou Ying, Liu Huasai, Han Yun, et al. Microstructure evolution and mechanical properties of medium manganese steel based on annealing path[J]. Iron and Steel, 2022, 57(4): 97-104. [13]Greenwood G W, Johnson R H. The deformation of metals under small stresses during phase transformations[J]. Proceedings of the Royal Society A, 1965, 283(1394): 403-422. [14]Richman R H, Bolling G F. Stress, deformation, and martensitic transformation[J]. Metallurgical Transactions, 1971, 2(9): 2451-2462. [15]Liu L, He B, Huang M. Therole of transformation-induced plasticity in the development of advanced high strength steels[J]. Advanced Engineering Materials, 2018, 20(6): 1701083. [16]刘春成, 姚可夫, 高国峰, 等. 应力应变对马氏体相变动力学及相变塑性影响的研究[J].金属学报, 1999, 35(11): 1125-1129. Liu Chuncheng, Yao Kefu, Gao Guofeng, et al. Study to the effect of stress and strain on martensite transformation kinetics and transformation plasticity[J]. Acta Metallurgica Sinica, 1999, 35(11): 1125-1129. [17]Yang Y G, Mi Z L, Xu M, et al. Impact ofintercritical annealing temperature and strain state on mechanical stability of retained austenite in medium Mn steel[J]. Materials Science and Engineering A, 2018, 725: 389-397. [18]谢振家. 高性能低合金钢中残余奥氏体调控机理及性能研究[D]. 北京: 北京科技大学, 2016. |