[1]马明星, 朱达川, 王志新, 等. Zr元素对CoCrCuFeMn高熵合金组织及耐磨性能的影响[J]. 工程科学与技术, 2021, 53(6): 204-210. Ma Mingxing, Zhu Dachuan, Wang Zhixin, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy[J]. Advanced Engineering Sciences, 2021, 53(6): 204-210. [2]Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759-1771. [3]Ma M X, Zhao L, Wang Z X, et al. Effect of CeO2 doping on the microstructure and corrosion behavior of CoCuNiTi high-entropy alloy coatings[J]. Materiali in Tehnologije, 2021, 55(6): 861-869. [4]He Q F, Wang J G, Chen H A, et al. A highly distorted ultraelastic chemically complex Elinvar alloy[J]. Nature, 2022, 602: 251-257. [5]Ma M X, Wang Z X, Zhou J C, et al. Effect of CeO2 doping on phase structure and microstructure of AlCoCuFeMnNi alloy coating[J]. Materials Research, 2019, 22(1): 20180327. [6]徐洪洋, 孟雯露, 卢金斌, 等. 基于第一性原理的CrCuFeNiTi高熵合金涂层的相及稳定性分析[J]. 金属热处理, 2021, 46(7): 60-64. Xu Hongyang, Meng Wenlu, Lu Jinbin, et al. Phase and stability analysis of CrCuFeNiTi high entropy alloy coating based on first principles[J]. Heat Treatment of Metals, 2021, 46(7): 60-64. [7]Zhao C M, Wu H, Zhang J F, et al. Effect of Nb addition on microstructure and mechanical properties of Fe0. 5MnNi1. 5CrNbx high-entropy alloys[J]. Rare Metal Materials and Engineering, 2021, 50(8): 2783-2788. [8]张 昊, 吴 昊, 唐啸天, 等. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59. Zhang Hao, Wu Hao, Tang Xiaotian, et al. Effect of microscale W elements on microstructure and properties of CoCrFeNiMnAl high entropy alloys[J]. Journal of Materials Engineering, 2022, 50(3): 50-59. [9]Shi F K, Zhang Q K, Xu C, et al. In-situ synthesis of NiCoCrMnFe high entropy alloy coating by laser cladding[J]. Optics and Laser Technology, 2022, 151: 108020. [10]马明星, 王志新, 周家臣, 等. Ti掺杂对CoCrCuFeMn高熵合金组织结构和耐磨性的影响[J]. 机械工程学报, 2020, 56(10): 110-116. Ma Mingxing, Wang Zhixin, Zhou Jiachen, et al. Effect of Ti doping on microstructure and wear resistance of CoCrCuFeMn high-entropy alloys[J]. Journal of Mechanical Engineering, 2020, 56(10): 110-116. [11]Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41: 96-103. [12]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. [13]Ma M X, Wang Z X, Zhou J C, et al. Effect of Zr additions on phase transformations, microstructure and wear resistance of high-entropy AlCoCrCuFe alloy[J]. Metal Science and Heat Treatment, 2022, 63: 470-478. [14]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [15]陆海峰, 缪 强, 梁文萍, 等. 不同温度对TC4-DT钛合金摩擦磨损性能的影响[J]. 南京航空航天大学学报, 2016, 48(1): 29-34. Lu Haifeng, Miao Qiang, Liang Wenping, et al. Effect of different temperatures on tribological properties of TC4-DT alloy[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(1): 29-34. [16]马明星, 王志新, 卢金斌,等. CeO2掺杂对CoCrCuFeMn高熵合金组织结构与耐磨性的影响[J]. 材料热处理学报, 2019, 40(9): 50-56. Ma Mingxing, Wang Zhixin, Lu Jinbin, et al. Effect of CeO2 doping on microstructure and wear resistance of CoCrCuFeMn high-entropy alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 50-56. [17]An X L, Liu Z D, Zhang L T, et al. A new strong pearlitic multi-principal element alloy to withstand wear at elevated temperatures[J]. Acta Materialia, 2022, 227: 117700. |