[1]占 戈. 稳定化退火温度及加工工艺对5083铝合金的组织及性能的影响[D]. 长沙: 中南大学, 2013. Zhan Ge. Effect of stabilizing annealing temperature and processing on microstructure and properties of 5383 aluminum alloy[D]. Changsha: Central South University, 2013. [2]Lee B H, Kim S H, Park J H, et al. Role of Mg in simultaneously improving the strength and ductility of Al-Mg alloys[J]. Materials Science and Engineering A, 2016, 657: 115-122. [3]郭 成, 李宝绵, 张海涛, 等. 高强耐蚀5×××系铝合金的研究现状及发展趋势[J]. 稀有金属, 2018(8): 878-884. Guo Cheng, Li Baomian, Zhang Haitao, et al. Research status and development trend of high-strength and corrosion-resistant 5××× series aluminum alloy[J]. Chinese Journal of Rare Metals, 2018(8): 878-884. [4]杨玉洁, 王 旭, 吴 明. Mg含量对Al-Mg合金应力腐蚀行为的影响[J]. 金属热处理, 2019, 44(3): 64-69. Yang Yujie, Wang Xu, Wu Ming. Effect of Mg content on the stress corrosion behavior of Al-Mg alloy[J]. Heat Treatment of Metals, 2019,44(3): 64-69. [5]张飞鹏, 黄晓亚, 徐开东, 等. Al-Mg-Mn-Sc-Zr合金的断裂韧性[J]. 金属热处理, 2013, 38(12):14-18. Zhang Feipeng, Huang Xiaoya, Xu Kaidong, et al. Fracture toughness of Al-Mg-Mn-Sc-Zr alloy[J]. Heat Treatment of Metals, 2013, 38(12): 14-18. [6]高红选, 卫广智, 樊 磊, 等. 稀土元素铈对铸态Al-Mg合金组织和力学性能的影响[J]. 有色金属工程, 2014(3): 15-17. Gao Hongxuan, Wei Guangzhi, Fan Lei, et al. Effect of Ce on microstructure and mechanical properties of as-cast Al-Mg alloys[J]. Nonferroous Metals Engineering, 2014(3): 15-17. [7]葛丽丽, 程仁策, 吕正风, 等. Mn含量对Al -Mg合金板材组织与性能的影响[J]. 金属热处理, 2017, 42(5): 14-17. Ge Lili, Cheng Rence, Lü Zhengfeng, et al. Effects of Mn content on microstructure and mechanical properties of Al-Mg alloy plate[J]. Heat Treatment of Metals, 2017, 42(5): 14-17. [8]马青梅,李菁菁,张国文,等. 退火及冷却方式对5182铝合金屈服平台的影响[J]. 材料热处理学报, 2019, 40(9): 21-25. Ma Qingmei, Li Jingjing, Zhang Guowen, et al. Effect of annealing and cooling rate on yield plateau of 5182 alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 21-25. [9]王松辉, 孙有平, 陶德福, 等. Zr含量对大应变轧制2524铝合金板材微观组织及力学性能的影响[J]. 材料热处理学报, 2018,39(11): 28-37. Wang Songhui, Sun Youping, Tao Defu, et al. Effect of Zr content on microstructure and mechanical properties of 2524 aluminum alloys sheet fabricated by large strain rolling[J]. Transactions of Materials and Heat Treatment, 2018, 39(11): 28-37. [10]胡汉起. 金属凝固理论[M]. 北京: 机械工业出版社, 2007. Hu Hanqi. Metal Solidification Theory[M]. Beijing: Machinery Industry Press, 2007. [11]朱庆丰, 朱 成, 陈庆强, 等. Zr含量对工业纯铝组织及性能的影响[J]. 材料科学与工艺, 2017, 25(1): 30-35. Zhu Qingfeng, Zhu Cheng, Chen Qingqiang, et al. Effect of the Zr content on the structure and property of commercial aluminum[J]. Material Science and Technology, 2017, 25(1): 30-35. [12]Zhang C M, Jiang Y, Cao F H, et al. Formation of coherent, core-shelled nano-particles in dilute Al-Sc-Zr alloys from the first-principles[J]. Journal of Materials Science & Technology, 2019, 35: 930-938. [13]Zhang C M, Yin D F, Jiang Y, et al. Precipitation of L12-phase nano-particles in dilute Al-Er-Zr alloys from the first-principles[J]. Computational Materials Science, 2019, 162: 171-177. [14]Ralston K D, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminum[J]. Electrochimica Acta, 2011, 56(4): 1729-1736. [15]Song F X, Zhang X M, Liu S D, et al. The effect of quench rate and overageing temper on the corrosion behavior of AA7050[J]. Corrosion Science, 2014, 78: 276-286. [16]Luo X E, Fang H J, Liu H, et al. Effect of Sc and Zr on Al6(Mn,Fe) phase in Al-Mg-Mn alloys[J]. Materials Transactions, 2019, 60: 734-742. |