[1]国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[N]. 人民日报, 2022-03-01. [2]Liu L, He B, Huang M. The role of transformation-induced plasticity in the development of advanced high strength steels[J]. Advanced Engineering Materials, 2018, 20(6): 1701083. [3]Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn(austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism[J]. Acta Materialia, 2018, 147: 247-260. [4]卢 柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1): 1-10. Lu Ke. Gradient nanostructured materials[J]. Acta Metallurgica Sinica, 2015, 51(1): 1-10. [5]Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties[J]. Progress in Materials Science, 2022, 123: 100709. [6]王存宇, 常 颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410. Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020, 56(4): 400-410. [7]张喜亮, 侯华峰, 刘 涛, 等. 一种新型高强塑积异质冷轧中锰钢的力学性能[J]. 材料研究学报, 2019, 33(12): 927-934. Zhang Xiliang, Hou Huafeng, Liu Tao, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility[J]. Chinese Journal of Materials Research, 2019, 33(12): 927-934. [8]Zhang X, Teng R, Liu T, et al. Improving strength-ductility synergy in medium Mn steel by combining heterogeneous structure and TRIP effect[J]. Materials Characterization, 2022, 184: 111661. [9]邵成伟, 惠卫军, 张永健, 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201. Shao Chengwei, Hui Weijun, Zhang Yongjian, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility[J]. Acta Metallurgica Sinica, 2019, 55(2): 191-201. [10]Zou Y, Ding H, Zhang Y, et al. Microstructural evolution and strain hardening behavior of a novel two-stage warm rolled ultra-high strength medium Mn steel with heterogeneous structures[J]. International Journal of Plasticity, 2022, 151: 103212. [11]He B B, Wang M, Liu L, et al. High-strength medium Mn quenching and partitioning steel with low yield ratio[J]. Materials Science and Technology, 2019, 35(17): 2109-2114. [12]Niu G, Tang Q B, Zurob H S, et al. Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains[J]. Materials Science and Engineering A, 2019, 759: 1-10. [13]Li J, Song R, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing[J]. Materials Science and Engineering A, 2019, 745: 212-220. [14]Bai S, Xiao W, Niu W, et al. Microstructure and mechanical properties of a medium-Mn steel with 1.3 GPa-strength and 40%-ductility[J]. Materials, 2021, 14(9): 2233. [15]Zhang Y, Ding H, Zhu H, et al. Superior strength-ductility combination achieved via double heterogeneities of microstructure and composition: An example of medium manganese steel[J]. Materials Science and Engineering A, 2022, 834: 142443. [16]Kwok T W J, Rahman K M, Xu X, et al. Design of a high strength, high ductility 12wt%Mn medium manganese steel with hierarchical deformation behaviour[J]. Materials Science and Engineering A, 2020, 782: 139258. [17]Sun S, Cai M, Ding H, et al. Deformation mechanisms of a novel Mn-based 1 GPa TRIP/TWIP assisted lightweight steel with 63% ductility[J]. Materials Science and Engineering A, 2021, 802: 140658. [18]Jia Q, Chen L, Xing Z, et al. Tailoring hetero-grained austenite via a cyclic thermomechanical process for achieving ultrahigh strength-ductility in medium-Mn steel[J]. Scripta Materialia, 2022, 217: 114767. [19]Wu X, Yuan F, Yang M, et al. Nanodomained nickel unite nanocrystal strength with coarse-grain ductility[J]. Scientific Reports, 2015, 5: 11728. [20]阳 锋, 罗海文, 董 瀚. 临界退火温度对热轧7Mn钢组织和性能的影响[J]. 金属热处理, 2018, 43(5): 76-82. Yang Feng, Luo Haiwen, Dong Han. Effect of intercritical annealing temperature on microstructure and mechanical properties of hot-rolled 7Mn steel[J]. Heat Treatment of Metals, 2018, 43(5): 76-82. [21]Hu B, Luo H, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review[J]. Journal of Materials Science and Technology, 2017, 33(12): 1457-1464. [22]王润勋, 王宝峰, 李 岩, 等. 0.2C-5Mn-1.5Al中锰TRIP钢的显微组织及力学性能[J]. 金属热处理, 2020, 45(4): 63-68. Wang Runxun, Wang Baofeng, Li Yan, et al. Microstructure and mechanical properties of 0.2C-5Mn-1.5Al medium manganese TRIP steel[J]. Heat Treatment of Metals, 2020, 45(4): 63-68. [23]徐娟萍, 付 豪, 王 正, 等. 中锰钢的研究进展与前景[J]. 工程科学学报, 2019, 41(5): 557-572. Xu Juanping, Fu Hao, Wang Zheng, et al. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 557-572. [24]宋丽娜, 兰 鹏, 刘春秀, 等. 第3代汽车用中锰钢的研究现状[J]. 钢铁研究学报, 2015, 27(7): 1-8. Song Lina, Lan Peng, Liu Chunxiu, et al. Research of the third generation medium manganese steel[J]. Journal of Iron and Steel Research, 2015, 27(7): 1-8. [25]Lee Y K, Choi C. Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system[J]. Metallurgical and Materials Transactions A, 2000, 31(2): 355-360. [26]Aristeidakis J S, Haidemenopoulos G N. Composition and processing design of medium-Mn steels based on CALPHAD, SFE modeling, and genetic optimization[J]. Acta Materialia, 2020, 193: 291-310. [27]宋仁伯, 霍巍丰, 周乃鹏, 等. Fe-Mn-Al-C系中锰钢的研究现状与发展前景[J]. 工程科学学报, 2020, 42(7): 814-828. Song Renbo, Huo Weifeng, Zhou Naipeng, et al. Research progress and prospect of FeMnAlC medium Mn steels Fe-Mn-Al-C[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. [28]Wen P, Hu B, Han J, et al. A strong and ductile medium Mn steel manufactured via ultrafast heating process[J]. Journal of Materials Science and Technology, 2022, 97: 54-68. [29]Wang M, Jiang M, Tasan C C. Manganese micro-segregation governed austenite re-reversion and its mechanical effects[J]. Scripta Materialia, 2020, 179: 75-79. [30]Wan X, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium Mn steels[J]. Scripta Materialia, 2019, 166: 68-72. [31]Wan X, Liu G, Yang Z, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure[J]. Scripta Materialia, 2021, 198: 113819. [32]Yasnikov I S, Vinogradov A, Estrin Y. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals[J]. Scripta Materialia, 2014, 76: 37-40. [33]Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications[J]. Materials Science and Technology, 2017, 33(15): 1713-1727. [34]Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501-14505. [35]He B B, Huang M X. Strong and ductile medium Mn steel without transformation-induced plasticity effect[J]. Materials Research Letters, 2018, 6(7): 365-371. [36]Wang Y, Yang M, Ma X, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates[J]. Materials Science and Engineering A, 2018, 727: 113-118. [37]Zhu Y, Wu X. Perspective on hetero-deformation induced(HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7(10): 393-398. [38]Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263. [39]聂金凤, 范 勇, 赵 磊, 等. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015. Nie Jinfeng, Fan Yong, Zhao Lei, et al. Latest research progress on the strengthening and toughening mechanism of particle reinforced aluminum matrix composites[J]. Materials Reports, 2021, 35(9): 9009-9015. [40]Landron C, Maire E, Bouaziz O, et al. Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels[J]. Acta Materialia, 2011, 59(20): 7564-7573. [41]张 睿, 曹文全, 胡 俊. 两相区轧制后低碳中锰钢中残留奥氏体在单向拉伸过程中的演变行为[J]. 金属热处理, 2020, 45(8): 47-50. Zhang Rui, Cao Wenquan, Hu Jun. Retained austenite evolution behavior during unidirectional tension of low carbon medium manganese steel after intercritical rolling[J]. Heat Treatment of Metals, 2020, 45(8): 47-50. [42]Niu G, Wu H B, Zhang D, et al. Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility[J]. Materials Science and Engineering A, 2018, 725: 187-195. [43]Hu B, He B, Cheng G, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process[J]. Acta Materialia, 2019, 174: 131-141. [44]Sohn S S, Song H, Kwak J H, et al. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels[J]. Scientific Reports, 2017, 7(1): 1927. [45]Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels[J]. Materials Science and Engineering A, 2011, 528(13/14): 4516-4521. [46]Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite[J]. Materials Science and Engineering A, 2017, 688: 40-55. [47]Kisko A, Misra R D K, Talonen J, et al. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel[J]. Materials Science and Engineering A, 2013, 578: 408-416. [48]He B B, Luo H W, Huang M X. Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects[J]. International Journal of Plasticity, 2016, 78: 173-186. |