[1]Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials andapplications[J]. Applied Physics Reviews, 2015, 2(4): 041101. [2]Véle F, Ackermann M, Bittner V, et al. Influence of selective laser melting technology process parameters on porosity and hardness of AISI H13 tool steel: Statistical approach[J]. Materials, 2021, 14(20): 6052. [3]Garcias J F, Martins R F, Branco R, et al. Quasistatic and fatigue behavior of an AISI H13 steel obtained by additive manufacturing and conventional method[J]. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44(12): 3384-3398. [4]Hao L, Raymont D, Yan C, et al. Design and additive manufacturing of cellular lattice structures[C]//The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP). Taylor & Francis Group, Leiria. 2011: 249-254. [5]Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges[J]. Materials and Design, 2019, 183: 108137. [6]刘 斌, 谭景焕, 吴成龙. 基于3D打印的随形冷却水道注塑模具设计[J]. 工程塑料应用, 2015, 43(10): 71-74. Liu Bin, Tan Jinghuan, Wu Chenglong. Design of injection mould with conformal cooling channel based on 3D printing[J]. Engineering Plastics Application, 2015, 43(10): 71-74. [7]Wang Y, Yu K M, Wang C C L, et al. Automatic design of conformal cooling circuits for rapid tooling[J]. Computer-Aided Design, 2011, 43(8): 1001-1010. [8]Dang X P, Park H S. Design of U-shape milled groove conformal cooling channels for plastic injection mold[J]. International Journal of Precision Engineering & Manufacturing, 2011, 12(1): 73-84. [9]Thijs L, Sistiaga M L M, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum[J]. Acta Materialia, 2013, 61(12): 4657-4668. [10]宗学文, 高 倩, 周宏志, 等. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响[J]. 中国激光, 2019, 46(5): 344-350. Zong Xuewen, Gao Qian, Zhou Hongzhi, et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J]. Chinese Journal of Lasers, 2019, 46(5): 344-350. [11]朱云天, 杜开平, 沈 婕, 等. 激光能量密度对选区激光熔化(SLM)制品性能的影响及其机理研究[J]. 热喷涂技术, 2017, 9(2): 35-41. Zhu Yuntian, Du Kaiping, Shen Jie, et al. The study of the influences of laser energy density to the properties of SLM products and its mechanism[J]. Thermal Spray Technology, 2017, 9(2): 35-41. [12]许明三, 张 正, 黄 旭. 能量密度对SLM成形316L致密度与耐磨性能的影响研究[J]. 应用激光, 2021, 41(3): 431-438. Xu Mingsan, Zhang Zheng, Huang Xu. Effect of energy density on density and wear resistance of SLM formed 316L[J]. Applied Laser, 2021, 41(3): 431-438. [13]杨 益, 党明珠, 李 伟, 等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究[J]. 机械工程学报, 2020, 56(3): 181-188. Yang Yi, Dang Mingzhu, Li Wei, et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(3): 181-188. [14]Gu D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860. [15]Bergant Z, Grum J. The influence of chemical composition on residual stresses in NiCoMo alloy deposits on 12Ni maraging steel[J]. Materials Science Forum, 2014, 768-769: 449-455. [16]严 凯, 陈长军, 张 敏, 等. 激光增材制造H13钢及回火处理的组织和性能[J]. 中国表面工程, 2017, 30(2): 134-142. Yan Kai, Chen Changjun, Zhang Min, et al. Microstructure and properties of laser additive manufacturing and tempered H13 steel[J]. China Surface Engineering, 2017, 30(2): 134-142. [17]Gu Dongdong, Meiners Wilhelm. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting[J]. Materials Science and Engineering A, 2010, 527(29/30): 7585-7592. |