[1]高 原, 于随然. 计算机辅助飞机铆钉连接优化设计[J]. 机电一体化, 2014(12): 55-61. [2]张汝麟. 飞行控制与飞机发展[J]. 北京航空航天大学学报, 2003, 29(12): 1077-1083. Zhang Rulin. Development of flight control with aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12): 1077-1083. [3]王黎明, 冯潼能. 数字化自动钻铆技术在飞机制造中的应用[J]. 航空制造技术, 2008(11): 40-45. [4]叶 唐, 胡传顺, 秦 华, 等. Monel400合金腐蚀行为的研究[J]. 热加工工艺, 2006, 35(22): 36-38. Ye Tang, Hu Chuanshun, Qin Hua, et al. Study of corrosion behavior of Monel 400 alloy[J]. Hot Working Technology, 2006, 35(22): 36-38. [5]Gouda V K, Aakhedr I, Fathi A M. Pitting corrosion behaviour of Monel-400 alloy in chloride solutions[J]. Journal of Materials Science and Technology, 1999, 15(3): 208-212. [6]吴金霞. 浅析我国飞机制造业贸易现状[J]. 现代商业, 2020, 2(2): 72-73. [7]陈明松, 秦刚华, 蔺永诚, 等. 超超临界发电机组螺栓用镍基高温合金混晶组织均匀细化工艺[J]. 精密成形工程, 2021, 13(3): 125-130. Chen Mingsong, Qin Ganghua, Lin Yongcheng, et al. Process for refinement of mixed grain microstructure of deformed Ni-based superalloy for bolts of ultra supercritical generator sets[J]. Journal of Netshape Forming Engineering, 2021, 13(3): 125-130. [8]龚超杰, 屠晓倩, 桑逸婷, 等. 热处理温度及冷加工率对弥散强化铜性能的影响[C]//中国有色金属工业协会. 第三届中国(铜陵)铜基新材料产业发展论坛暨首届中国(铜陵)铜基新材料产业国际论坛论文集. 2016: 83-90. [9]Zhang Bing, Tao Chunhu, Lu Xin, et al. Recrystallization of single crystal nickel-based superalloy[J]. Journal of Iron and Steel Research, International, 2009, 16(6): 75-79. [10]谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(S1): 375-379. Xie Xingfei, Qu Jinglong, Du Jinhui. Effect of mixed grain structure on high temperature stress rupture property of Ni-based GH4720Li superalloy[J]. Materials Reports, 2020, 34(S1): 375-379. [11]左申傲, 刘怀河. 单相铜合金晶粒度的测定方法与应用[J]. 机械工程材料, 2005, 29(9): 72-73. Zuo Shen'ao, Liu Huaihe. Measurement and application of the grain size of α single-phase Cu alloys[J]. Materials for Mechanical Engineering, 2005, 29(9): 72-73. [12]Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels[J]. Materials and Design, 2008, 29(9): 1840-1844. [13]Srolovitz D J, Anderson M P, Sahni P S, et al. Computer simulation of grain growth-II. Grain size distribution, topology, and local dynamics[J]. Acta Metallurgica, 1984, 32(5): 793-802. [14]Militzer M, Hawbolt E B, Meadowcroft T R, et al. Austenite grain growth kinetics in Al-killed plain carbon steels[J]. Metallurgical and Materials Transactions A, 1996, 27(11): 3399-3409. [15]刘清友, 董 瀚, 孙新军, 等. CSP工艺中含Nb钢的混晶问题及改善方法[J]. 钢铁, 2003, 38(8): 16-19. Liu Qingyou, Dong Han, Sun Xinjun, et al. The mixed grains microstructure of Nb microalloyed strip and eliminating methods in CSP processing[J]. Iron and Steel, 2003, 38(8): 16-19. [16]梁 博. 结构钢加热过程中奥氏体晶粒长大模型及应用[J]. 热加工工艺, 2013, 42(22): 80-82. Liang Bo. Austenite grain growth model and application in heating process of structural steel[J]. Hot Working Technology, 2013, 42(22): 80-82. [17]张志波, 孙新军, 刘清友, 等. 均热过程中低碳钢奥氏体晶粒长大规律研究[J]. 材料热处理学报, 2008, 29(5): 82-89. Zhang Zhibo, Sun Xinjun, Liu Qingyou, et al. Study on austenite grain growth of a low carbon steel in heating process[J]. Transactions of Materials and Heat Treatment, 2008, 29(5): 82-89. [18]洪 橙, 陈荣创, 郑志镇, 等. 300M钢奥氏体晶粒等温长大模型[J]. 塑性工程学报, 2018, 25(1): 175-179. Hong Cheng, Chen Rongchuang, Zheng Zhizhen, et al. Isothermal growth model of austenite grain for 300M steel[J]. Journal of Plasticity Engineering, 2018, 25(1): 175-179. |