[1]张中武, 魏兴豪, 赵 刚. 低合金高强钢的强韧化机理与焊接性能[J]. 鞍钢技术, 2018(4): 1-8. Zhang Zhongwu, Wei Xinghao, Zhao Gang. Strengthening and toughening mechanism for high strength low alloy steel and its weldability[J]. Angang Technology, 2018(4): 1-8. [2]陈连生, 徐静辉, 田亚强, 等. 含Cu低碳钢I&Q&P工艺处理后的组织与性能 [J]. 金属热处理, 2016, 41(8): 76-80. Chen Liansheng, Xu Jinghui, Tian Yaqiang, et al. Effect of Cu partitioning on microstructure and mechanical properties of low-carbon steel by I&Q&P process[J]. Heat treatment of Metals, 2016, 41(8): 76-80. [3]VanBohemen S M C, Sietsma J. Martensite formation in partially and fully austenitic plain carbon steels[J]. Metallurgical and Materials Transactions A, 2009, 40(5): 1059-1068. [4]杜瑜宾, 胡小锋, 张守清, 等. 含1.4%Cu的HSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354. Du Yubin, Hu Xiaofeng, Zhang Shouqing, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu[J]. Acta Metallurgica Sinica, 2020, 56(10): 1343-1354. [5]Fu W, Li C, Di X, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying[J]. Materials Letters, 2022, 316: 132031. [6]Li C, Duan R, Fu W, et al. Improvement of mechanical properties for low carbon ultra-high strength steel strengthened by Cu-rich multistructured precipitation via modification to bainite[J]. Materials Science and Engineering A, 2021, 817: 141337. [7]陈 晨, 罗小兵, 梁丰瑞, 等. 淬火加热方法对含铜高强度球扁钢组织和性能的影响[J]. 热处理, 2021, 36(3): 31-36, 54. Chen Chen, Luo Xiaobing, Liang Fengrui, et al. Effect of methods of heating for hardening on microstructure and properties of cooper-bearing high-strength flat bulb steel[J]. Heat Treatment, 2021, 36(3): 31-36, 54. [8]朱志明, 柴 锋, 梁丰瑞, 等. 低合金钢感应淬火温度场模拟与优化[J]. 钢铁研究学报, 2017, 29(1): 75-80. Zhu Zhiming, Chai Feng, Liang Fengrui, et al. Temperature field simulation and optimization of low alloy-steel involved induction hardening[J]. Journal of Iron and Steel Research, 2017, 29(1): 75-80. [9]柴希阳, 柴 锋, 苏 航, 等. 回火对感应淬火10CrNi3MoV球扁钢组织和性能的影响[J]. 金属热处理, 2015, 40(3): 77-81. Chai Xiyang, Chai Feng, Su Hang, et al. Effects of tempering on microstructure and mechanical properties of induction hardened 10CrNi3MoV bulb flat steel[J]. Heat Treatment of Metals, 2015, 40(3): 77-81. [10]李振团, 柴 锋, 罗小兵, 等. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137. Li Zhentuan, Chai Feng, Luo Xiaobing, et al. Effect of aging temperature on mechanical properties of ultra high strength marine engineering steel strengthened by Cu precipitation[J]. Materials Reports, 2020, 34(6): 6132-6137. [11]刘庆冬. HSLA铁素体钢中Cu析出强化和奥氏体韧化的原子探针层析技术研究[D]. 上海: 上海大学, 2012. Liu Qingdong. Atom probe tomography study on copper precipitation strengthening and reverse austenite toughening in HSLA ferritic steel[D]. Shanghai: Shanghai University, 2012. [12]张正延, 柴 锋, 罗小兵, 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791. Zhang Zhengyan, Chai Feng, Luo Xiaobing, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel[J]. Acta Metallurgica Sinica, 2019, 55(6): 783-791. [13]Xiong Z, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels[J]. Progress in Materials Science, 2021, 118: 100764. [14]Zhou R, Zhu L. Growth behavior and strengthening mechanism of Cu-rich particles in sanicro 25 austenitic heat-resistant steel after aging at 973 K[J]. Materials Science and Engineering A, 2020, 796: 139973. [15]孙铭璇, 孟 利, 张 宁, 等. 低碳含Cu中厚钢板富Cu相的时效析出行为[J]. 金属热处理, 2023, 48(2): 94-102. Sun Mingxuan, Meng Li, Zhang Ning, et al. Aging precipitation behavior of Cu-rich particles of low-carbon Cu-bearing medium and heavy steel plate[J]. Heat Treatment of Metals, 2023, 48(2): 94-102. [16]Luo H, Wang X, Liu Z, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. Journal of Materials Science and Technology, 2020, 51: 130-136. [17]沈俊昶, 罗志俊, 杨才福, 等. 低合金钢板条组织中影响低温韧性的“有效晶粒尺寸”[J]. 钢铁研究学报, 2014, 26(7): 70-76. Shen Junchang, Luo Zhijun, Yang Caifu, et al. “Effective grain size” affecting low temperature toughness in lath structure of HSLA steel[J]. Journal of Iron and Steel Research, 2014, 26(7): 70-76. [18]余永宁. 金属学原理[M]. 3版. 北京: 冶金工业出版社, 2020. [19]张正延, 柴 锋, 罗小兵, 等. 一种利用EBSD测量钢中位错密度的方法: CN108535295A[P]. 2018-09-14. Zhang Zhengyan, Chai Feng, Luo Xiaobing, et al. Method for measuring dislocation density of steel through electron back-scattered diffraction (EBSD): CN108535295A[P]. 2018-09-14. [20]雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006. [21]Gutiérrez I, Altuna M A. Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension [J]. Acta Materialia, 2008, 56(17): 4682-4690. |