[1]Sui S, Feng P. Investigation on generation and features of burn defect in Ti6Al4V milling[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(1/4): 1-7. [2]Liu W, Lin Y, Chen Y. Effect of different heat treatments on microstructure and mechanical properties of Ti6Al4V titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3): 634-639. [3]王 文, 庞盛永, 周建新, 等. 钛合金热处理过程热力耦合的数值模拟研究[C]//第十八次全国焊接学术会议论文集. 2013: 221-225. [4]王 伟. TC4钛合金薄壁件退火变形数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2015. Wang Wei. Numerical simulation and experimental study on annealing distortion of Ti6Al4V thin-walled parts[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. [5]卢 政, 袁武华, 齐占福, 等. TA15钛合金锻件热处理过程残余应力演变研究[J]. 热加工工艺, 2019, 48(10): 227-230. Lu Zheng, Yuan Wuhua, Qi Zhanfu, et al. Study on residual stress evolution of TA15 titanium alloy forging during heat treatment[J]. Hot Working Technology, 2019, 48(10): 227-230. [6]张 睿, 左 正, 高 蕾, 等. TA15长梁锻件热处理过程温度场模拟研究[J]. 大型铸锻件, 2020(4): 18-19. Zhang Rui, Zuo Zheng, Gao Lei, et al. Study on temperature field simulation of TA15 long beam forging during heat treatment[J]. Heavy Casting and Forging, 2020(4): 18-19. [7]赵永庆, 辛杜伟, 陈永楠, 等. 新型合金材料——钛合金[M]. 北京: 中国铁道出版社, 2017. [8]谭国寅, 吴云峰, 杨 钢, 等. 固溶时效工艺对TC4钛合金冲击性能的影响[J]. 铸造技术, 2016, 37(5): 902-903. Tan Guoyan, Wu Yunfeng, Yang Gang, et al. Effect of solution aging treatment on impact property of TC4 titanium alloy[J]. Foundry Technology, 2016, 37(5): 902-903. [9]邹海贝. TC4 钛合金热处理强化工艺及相变行为研究[D]. 秦皇岛: 燕山大学, 2019. Zou Haibei. Study on heat treatment strengthening and phase transformation behavior of TC4 titanium alloy[D]. Qinhuangdao: Yanshan University, 2019. [10]Matsumoto H, Yoneda H, Sato K. Room-temperature ductility of Ti-6Al-4V alloy with α′ martensite microstructure[J]. Materials Science and Engineering A, 2011, 528(3): 1512-1520. |