[1]吴增强, 白 银, 马龙腾, 等. 650 ℃马氏体耐热钢研究及其进展[J]. 钢铁, 2015, 50(5): 1-6. Wu Zengqiang, Bai Yin, Ma Longteng, et al. Research and development of martensitic creep-resistant steels for 650 ℃[J]. Iron and Steel, 2015, 50(5): 1-6. [2]刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. Liu Zhengdong, Chen Zhengzong, He Xikou, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical (A-USC) fossil fired boilers[J]. Acta Metallurgica Sinica, 2020, 56(4): 539-548. [3]王敬忠, 刘正东, 包汉生, 等. 中国超超临界电站锅炉关键材料用钢及合金的研究现状[J]. 钢铁, 2015, 50(8): 1-9, 23. Wang Jigzhong, Liu Zhengdong, Bao Hansheng, et al. Study of steel and alloys for ultra-supercritical power plant in China[J]. Iron and Steel, 2015, 50(8): 1-9, 23. [4]张太超, 牛文献, 张鬲君, 等. 埋弧自动焊在 P91 钢厚壁管道焊接中的应用[J]. 热加工工艺, 2008, 37(11): 119-122. Zhang Taichao, Niu Wenxian, Zhang Lijun, et al. Application of submerged arc automatic welding in large thickness pipe welding of P91 steel[J]. Hot Working Technology, 2008, 37(11): 119-122. [5]杨 富, 章应霖, 任永宁, 等. 新型耐热钢焊接[M]. 北京: 中国电力出版社, 2006: 98. [6]刘正东, 陈正宗, 包汉生, 等. 新一代马氏体耐热钢G115研发及工程化[M]. 北京: 冶金工业出版社, 2020: 58. [7]孙志强. P92钢焊接工艺性能试验与研究[D]. 天津: 天津大学, 2007. Sun Zhiqiang. Study of P92 steel weld-joint properties technology[D]. Tianjin: Tianjin University, 2007. [8]李海昭, 梁 军, 周 超, 等. 正火温度对G115钢组织及 650 ℃强度的影响[J]. 金属热处理, 2018, 43(2): 173-177. Li Haizhao, Liang Jun, Zhou Chao, et al. Effect of normalizing temperature on microstructure of G115 steel and strength at 650 ℃[J]. Heat Treatment of Metals, 2018, 43(2): 173-177. |