[1]丁孝禹, 李 浩, 罗来马, 等. 国际热核试验堆第一壁材料的研究进展[J]. 机械工程材料, 2013, 37(11): 6-11.
Ding Xiaoyu, Li Hao, Luo Laima, et al. Progress in research of international thermonuclear experimental reator first wall materials[J]. Materials for Mechanical Engineering, 2013, 37(11): 6-11.
[2]Nigar D, Seyfettin E, Ayfer G, et al. Nuclear energy consumption, nuclear fusion reactors and environmental quality: The case of G7 countries[J]. Nuclear Engineering and Technology, 2022, 54(4): 1301-1311.
[3]Wurster S, Baluc N, Battabyal M, et al. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials[J]. Journal of Nuclear Materials, 2013, 442(1-3): 181-189.
[4]Roedig M, Kuehnlein W, Linke J, et al. Investigation of tungsten alloys as plasma facing materials for the ITER divertor[J]. Fusion Engineering & Design, 2002, 61: 135-140.
[5]Wang S M, Li J S, Wang Y X, et al. Thermal shock behavior analysis of tungsten-armored plasma-facing components for future fusion reactor[J]. Acta Metallurgica Sinica, 2018, 31(5): 69-76.
[6]Davis J W, Barabash V R, Makhankov A, et al. Assessment of tungsten for use in the ITER plasma facing components[J]. Journal of Nuclear Materials, 1998, 258/263: 308-312.
[7]Tan X Y, Klein F, Litnovsky A, et al. Evaluation of the high temperature oxidation of W-Cr-Zr self-passivating alloys[J]. Corrosion Science, 2019, 147: 201-211.
[8]Stork D, Zinkle S J. Introduction to the special issue on the technical status of materials for a fusion reactor[J]. Nuclear Fusion, 2017, 57: 092001.
[9]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[10]Xia S Q, Wang Z, Yang T F, et al. Irradiation behavior in high entropy alloys[J]. Journal of Iron and Steel Research, International, 2015, 22(10): 879-884.
[11]Zou Y, Wheeler J, Ma H, et al. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability[J]. Nano Letters, 2017, 17: 1569-1574.
[12]Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706.
[13]Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales[J]. Nature Communications, 2015, 6: 7748.
[14]Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corrosion Science, 2017, 119: 33-45.
[15]Zhang W, Tang R, Yang Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding[J]. Surface and Coatings Technology, 2018, 347: 13-19.
[16]Beck C E, Roberts S G, Edmondson P D, et al. Effect of alloy composition & helium ion-irradiation on the mechanical properties of tungsten, tungsten-tantalum & tungsten-rhenium for fusion power applications[J]. MRS Online Proceedings Library, 2013, 1514, https://doi.org/10.1557/opl.2013.356.
[17]Zhang Y, Chen F, Lv J, et al. Study of titanizing the surface of copper substrates by the double glow discharge plasma surface alloying technique[J]. Plasma Science and Technology, 2005(4): 2947-2949.
[18]张 军, 张 磊, 李国栋, 等. 化学气相沉积ZrB2涂层的微观形貌及晶粒择优生长[J]. 材料研究学报, 2017, 31(3): 168-174.
Zhang Jun, Zhang Lei, Li Guodong, et al. Micro-morphology and preferential growth of ZrB2 coating prepared by chemical vapor deposition[J]. Chinese Journal of Materials Research, 2017, 31(3): 168-174.
[19]唐 鹏, 王启民, 林松盛, 等. 基体偏压对高功率脉冲磁控溅射AlCrN涂层结构及其性能的影响[J]. 材料研究与应用, 2019, 13(4): 257-262.
Tang Peng, Wang Qimin, Lin Songsheng, et al. Influence of substrate bias on the structure and properties of AlCrN coatings deposited by high power impulse magnetron sputtering[J]. Materials Research and Application, 2019, 13(4): 257-262.
[20]Lugovy M, Slyunyayev V, Brodnikovskyy M. Solid solution strengthening in multicomponent fcc and bcc alloys: Analytical approach[J]. Progress in Natural Science: Materials International, 2021, 31(1): 95-104.
[21]Ziegler J F, Ziegler M D, Biersack J P. SRIM-The stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research, 2010, 268(11/12): 1818-1823. |