[1]蔡航伟, 高 原, 马志康, 等. 奥氏体不锈钢表面双辉等离子渗锆的动力学[J]. 机械工程材料, 2015, 39(1): 102-106. Cai Hangwei, Gao Yuan, Ma Zhikang, et al. Kinetics of double-glow plasma Zr surface alloying on austenite stainless steel[J]. Materials for Mechanical Engineering, 2015, 39(1): 102-106. [2]陆小会, 高 原, 韦文竹, 等. 奥氏体不锈钢表面等离子渗锆合金层的抗酸腐蚀性研究[J]. 桂林电子科技大学学报, 2014, 34(2): 168-172. Lu Xiaohui, Gao Yuan, Wei Wenzhu, et al. Research on acid corrosion resistance of Zr-alloyed layer formed on stainless steel by plasma technique[J]. Journal of Guilin University of Electronic Technology, 2014, 34(2): 168-172. [3]柴茂盛. 氙离子辐照对锆合金和奥氏体不锈钢微结构和性能的影响[D]. 北京: 清华大学, 2012. Chai Maosheng. Effect of xenon ion irradiation on microstructure and properties of Zr alloy and austenitic stainless steels[D]. Beijing: Tsinghua University, 2012. [4]Singh A, Murugesan S, Parameswaran P, et al. Characterization and performance of magnetron-sputtered zirconium coatings deposited on 9Cr-1Mo steel[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 4666-4679. [5]Hollis K J, Hawley M E, Dickerson P O. Characterization of thermal diffusion related properties in plasma sprayed zirconium coatings[J]. Journal of Thermal Spray Technology, 2011, 21(3/4): 409-415. [6]Zander D, Koster U. Corrosion of amorphous and nanocrystalline Zr-based alloys[J]. Materials Science and Engineering: A, 2004, 375-377(1): 53-59. [7]Lee T, Lee T, Kim I, et al. Breaking the limit of Young's modulus in low-cost Ti-Nb-Zr alloy for biomedical implant applications[J]. Journal of Alloys and Compounds, 2020, 828(1): 154401. [8]胡 欣, 魏 强, 李长义, 等. 新型口腔修复用钛锆铌锡合金的摩擦性能[J]. 中国组织工程研究与临床康复, 2010, 14(12): 2159-2163. Hu Xin, Wei Qiang, Li Changyi, et al. Wear resistance properties of Ti-Zr-Nb-Sn alloy for dental restoration[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(12): 2159-2163. [9]Kutty T, Ravi K, Ganguly C, et al. Studies on hot hardness of Zr and its alloys for nuclear reactors[J]. Journal of Nuclear Materials, 1999, 265(1): 91-99. [10]周 琪, 孙金华, 王秋红, 等. 纯锆粉及包覆Fe3O4锆粉的燃烧特性[J]. 燃烧科学与技术, 2012, 18(6): 533-538. Zhou Qi, Sun Jinhua, Wang Qiuhong, et al. Flame propagation characteristic of zirconium particle and zirconium particle coated with Fe3O4[J]. Journal of Combustion Science and Technology, 2012, 18(6): 533-538. [11]孙 涛, 程宗辉, 张志强, 等. 超高强度钢表面激光涂层的组织及力学性能[J]. 金属热处理, 2017, 42(11): 51-55. Sun Tao, Cheng Zonghui, Zhang Zhiqiang, et al. Microstructure and mechanical properties of laser cladding coating on surface of ultra-high strength steel[J]. Heat Treatment of Metals, 2017, 42(11): 51-55. [12]张佳琪, 董 梁, 鞠 恒, 等. 高速钢表面激光熔覆高硬涂层的组织性能[J]. 材料热处理学报, 2016, 37(9): 196-200. Zhang Jiaqi, Dong Liang, Ju Heng, et al. Microstructure and properties of surface coating on a high speed steel by laser cladding[J]. Transactions of Materials and Heat Treatment, 2016, 37(9): 196-200. [13]Zhang M, Zhou X, Yu X, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311(1): 321-329. [14]曹 鹏, 雷高峰, 苏成明, 等. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(S2): 424-427, 432. Cao Peng, Lei Gaofeng, Su Chengming, et al. Influence of different feeding process on laser cladding remanufacruring of hydraulic support[J]. Materials Reports, 2021, 35(S2): 424-427, 432. [15]Huang C, Zhang Y, Vilar R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials & Design, 2012, 41(1): 338-343. [16]Jiang H, Han K M, Li D Y, et al. Synthesis and characterization of AlCoCrFeNiNbx high-entropy alloy coatings by laser cladding[J]. Crystals, 2019, 9(1): 9010056. [17]Zhang S, Wu C L, Yi J Z, et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying[J]. Surface & Coatings Technology, 2015, 262: 64-69. [18]Li J, Zhang X, He X, et al. Preparation, biocompatibility and wear resistance of microstructured Zr and ZrO2 alloyed layers on 316L stainless steel[J]. Materials Letters, 2017, 203: 24-27. [19]魏 杰, 沈剑韵, 吴 刚, 等. Zr-Fe-Si体系580 ℃富Zr端相关系研究[J]. 稀有金属材料与工程, 2022, 51(3): 906-912. Wei Jie, Shen Jianyun, Wu Gang, et al. Study on the phase relations in Zr-Rich region of Zr-Fe-Si system at 580 ℃[J]. Rare Metal Materials and Engineering, 2022, 51(3): 906-912. [20]Mann J, Meek T, Knight E, et al. Configuration energies of the d-Block elements[J]. Journal of the American Chemical Society, 2000, 122: 5132-5137. [21]Lv P, Zhou K, Wang H P. Evidence for the transition from primary to peritectic phase growth during solidification of undercooled Ni-Zr alloy levitated by electromagnetic field[J]. Scientific Reports, 2016, 6(1): 39042. [22]Lv P, Wang H P, Wei B. Competitive nucleation and growth between the primary and peritectic phases of rapidly solidifying Ni-Zr hypoperitectic alloy[J]. Metallurgical and Materials Transactions A, 2018, 50(2): 789-803. [23]Lü P, Wang H P. Observation of the transition from primary dendrites to coupled growth induced by undercooling within Ni-Zr hyperperitectic alloy[J]. Scripta Materialia, 2017, 137(1): 31-35. [24]Maity T, Das J. High strength Ni-Zr-(Al) nanoeutectic composites with large plasticity[J]. Intermetallics, 2015, 63(1): 51-58. [25]Liu K, Li Y, Wang J, et al. Preparation, microstructural evolution and properties of Ni-Zr intermetallic/Zr-Si ceramic reinforced composite coatings on zirconium alloy by laser cladding[J]. Journal of Alloys and Compounds, 2015, 647(1): 41-49. |