[1]刘章光, 李培杰, 尹西岳, 等. 变形参数对TA32合金的超塑性变形行为及微观组织演化的影响[J]. 稀有金属材料与工程, 2018, 47(11): 3473-3481. Liu Zhangguang, Li Peijie, Yin Xiyue, et al. Effects of deformation parameters on the superplastic behavior and microstructure evolution of TA32 alloy[J]. Rare Metal Materials and Engineering, 2018, 47(11): 3473-3481. [2]雷 林, 杨庆波, 张志清, 等. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(S1): 348-352. Lei Lin, Yang Qingbo, Zhang Zhiqing, et al. Multi-pass compression behavior and microstructure evolution of AA2195 aluminum lithium alloy[J]. Materials Reports, 2019, 33(S1): 348-352. [3]甘洪岩, 程 明, 宋鸿武, 等. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122. Gan Hongyan, Cheng Ming, Song Hongwu, et al. Dynamic recrystallization and texture evolution of GH4169 alloy during cross wedge rolling[J]. Journal of Materials Engineering, 2020, 48(2): 114-122. [4]乔士宾, 何西扣, 刘敬杰, 等. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77. Qiao Shibing, He Xikou, Liu Jingjie, et al. Microstructure evolution and flow stress modeling of SA508Gr.4N steel during hot deformation process[J]. Journal of Materials Engineering, 2021, 49(3): 67-77. [5]Li Jiachen, Wu Xiaodong, Liao Bin, et al. Simulation of low proportion of dynamic recrystallization in 7055 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 1902-1915. [6]冯 瑞, 王克鲁, 鲁世强, 等. BT25钛合金β相区动态再结晶行为及数值模拟[J]. 稀有金属材料与工程, 2021, 50(3): 894-901. Feng Rui, Wang Kelu, Lu Shiqiang, et al. Dynamic recrystallization behavior and numerical simulation of β phase of BT25 titanium alloy[J]. Rare Metal Materials and Engineering, 2021, 50(3): 894-901. [7]鲁龙龙, 张彦敏, 权思佳, 等. 双态组织Ti80合金的动态再结晶行为[J]. 稀有金属材料与工程, 2021, 50(8): 2979-2985. Lu Longlong, Zhang Yanmin, Quan Sijia, et al. Dynamic recrystallization behavior of Ti80 alloy with bimodal structure[J]. Rare Metal Materials and Engineering, 2021, 50(8): 2979-2985. [8]曹富荣, 丁 鑫, 项 超, 等. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870. Cao Furong, Ding Xin, Xiang Chao, et al. Flow stress, microstructural evolution, and constitutive analysis during high-temperature deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y alloy[J]. Acta Metallurgica Sinica, 2021, 57(7): 860-870. [9]杨靖丞, 王立忠, 钟志平, 等. 基于动态再结晶37CrS4特种钢的流变应力预测模型[J]. 材料研究学报, 2021, 35(4): 284-292. Yang Jingcheng, Wang Lizhong, Zhong Zhiping, et al. Flow stress prediction model of 37CrS4 special steel based on dynamic recrystallization[J]. Chinese Journal of Materials Research, 2021, 35(4): 284-292. [10]张 阳, 邵建波, 陈 韬, 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735. Zhang Yang, Shao Jianbo, Chen Tao, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging[J]. Acta Metallurgica Sinica, 2020, 56(5): 723-735. [11]王雅静, 刘宗昌, 段宝玉. 34CrNi3MoV钢组织细化工艺的研究[J]. 兵器材料科学与工程, 2013, 36(1): 128-132. Wang Yajing, Liu Zongchang, Duan Baoyu. Microstructure of refined 34CrNi3MoV steel[J]. Ordnance Materials Science and Engineering, 2013, 36(1): 128-132. [12]赵勇桃, 刘宗昌, 王玉峰. 34CrNi3MoV钢的混晶及消除措施[J]. 金属热处理, 2007, 32(5): 75-77. Zhao Yongtao, Liu Zongchang, Wang Yufeng. Mixed grain and elimination measure of 34CrNi3MoV steel[J]. Heat Treatment of Metals, 2007, 32(5): 75-77. [13]马腾飞, 李宇力, 周 宣, 等. 粗晶GH4720Li合金热变形行为与动态再结晶特点[J]. 稀有金属材料与工程, 2020, 49(1): 201-208. Ma Tengfei, Li Yuli, Zhou Xuan, et al. Deformation behavior and dynamic recrystallization characteristic of coarse GH4720Li alloy[J]. Rare Metal Materials and Engineering, 2020, 49(1): 201-208. [14]程晓农, 桂 香, 罗 锐, 等. 新型奥氏体耐热钢CHDG-A的动态再结晶行为及其动力学模型[J]. 材料研究学报, 2020, 34(8): 611-620. Cheng Xiaonong, Gui Xiang, Luo Rui, et al. Dynamic recrystallization behavior and kinetics model of a new developed austenitic heat resistant steel CHDG-A[J]. Journal of Materials Research, 2020, 34(8): 611-620. [15]尹畅畅, 余登德, 陈家林, 等. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126. Yin Changchang, Yu Dengde, Chen Jialin, et al. Hot deformation behavior and microstructure evolution of NiPt15 alloy[J]. Materials Reports, 2021, 35(10): 10120-10126. [16]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 11-36. [17]Ryan N D, McQueen H J. Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel[J]. Journal of Materials Processing Technology, 1990, 21(2): 177-199. [18]Poliak E I, Joans J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. [19]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3/4): 187-194. [20]Serajzadeh S, Taheri A K. Prediction of flow stress at hot working condition[J]. Mechanics Research Communications, 2003, 30(1): 87-93. [21]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22(7): 1545-1558. [22]陈 曦, 亓耀国, 史晓楠, 等. IN718Plus高温合金的动态再结晶行为及模型研究[J]. 稀有金属, 2019, 43(12): 1260-1268. Chen Xi, Qi Yaoguo, Shi Xiaonan, et al. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus[J]. Chinese Journal of Rare Metals, 2019, 43(12): 1260-1268. |