[1]常 海, 黄 勇, 胡小石. 搅拌铸造法制备短碳纤维/AZ31复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1): 159-166. Chang Hai, Huang Yong, Hu Xiaoshi. Microstructure and mechanical properties of short carbon fiber/AZ91 composite fabricated by stir-casting[J]. Acta Materiae Compositae Sinica, 2019, 36(1): 159-166. [2]Zhang Peng, Li Jing, Wang Wenxian, et al. Design, shielding mechanism and tensile property of a novel (B4CP+6061Al)/Cf/6061Al laminar neutron-shielding composite[J]. Vacuum, 2020, 177: 109383. [3]Xiong Renlong, Kwon Hyeonseok, Kim Hyoung Seop, et al. Novel multi-metal stainless steel (316L)/high-modulus steel(Fe-TiB2) composite with enhanced specific modulus and strength using high-pressure torsion[J]. Materials Letters, 2021, 303: 130510. [4]Guo Siyuan, Shi Chunsheng, Zhao Naiqin, et al. Comprehensive performance regulation of Cu matrix composites with graphene nanoplatelets in situ encapsulated Al2O3 nanoparticles as reinforcement[J]. Carbon, 2022, 188: 81-94. [5]杨 涛, 刘润爱, 王文先, 等. 热轧高含量 B4C 颗粒增强 Al 基复合材料的成形性能[J]. 复合材料学报, 2021, 38: 2234-2243. Yang Tao, Liu Run′ai, Wang Wenxian, et al. The formability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica, 2021, 38: 2234-2243. [6]Wu C L, Zhang S, Zhang C H, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition[J]. Optics and Laser Technology, 2019, 115: 134-139. [7]Zhang Chen, Zhu Junkai, Ji Chaoyue, et al. Laser powder bed fusion of high-entropy alloy particle-reinforced stainless steel with enhanced strength, ductility, and corrosion resistance[J]. Materials and Design, 2021, 209: 109950. [8]Zhai Wengang, Zhou Wei, Nai Ling Mui Sharon. In-situ formation of TiC nanoparticles in selective laser melting of 316L with addition of micronsized TiC particles[J]. Materials Science and Engineering A, 2022, 829: 142179. [9]张 昊, 马 勤. 累积复合轧制制备TiC颗粒增强双相不锈钢基复合材料[J]. 金属热处理, 2014, 39(9): 41-44. Zhang Hao, Ma Qin. Production of duplex stainless steel composites reinforced with TiC particles by accumulative roll bonding[J]. Heat Treatment of Metals, 2014, 39(9): 41-44. [10]Zhai Wengang, Zhou Wei, Nai Ling Mui Sharon. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting[J]. Materials Science and Engineering A, 2022, 832: 142460. [11]Mandal Ajay, TiwariJitendar Kumar, Almangour Bandar, et al. Tribological behavior of graphene-reinforced 316L stainless-steel composite prepared via selective laser melting[J]. Tribology International, 2020, 151: 106525. [12]Zietala M, Durejko T, Polanski M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping[J]. Materials Science and Engineering A, 2016, 677: 1-10. [13]李 靖. 选区激光熔化成形TiC/316L不锈钢复合材料组织性能的研究[D]. 太原: 中北大学, 2020. Li Jing. Study on microstructure and properties of TiC/316L stainless steel composites fabricated by selective laser melting[D]. Taiyuan: North University of China, 2020. |