[1]师昌绪, 仲增墉. 我国高温合金的发展与创新[J]. 金属学报, 2010, 46(11): 1281-1288. Shi Changxu, Zhong Zengyong. Development and innovation of superalloy in China[J]. Acta Metallurgica Sinica, 2010, 46(11): 1281-1288. [2]Reed R C. The Superalloys Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006: 5. [3]Peng X, Wang F. High-temperature Oxidation of Aerospace Materials[M]//Zhang S, Zhao D L, eds. Aerospace Materials Handbook. Boca Raton: CRC Press, 2012: 237. [4]王业双. 汽车涡轮增压器壳体的材料应用和发展[J]. 铸造, 2018, 67(1): 66-71. Wang Yeshuang. Materials application and development of automotive turbocharger housing[J]. Foundry, 2018, 67(1): 66-71. [5]乔 兵. Cr含量对GH648合金抗氧化性的影响[J]. 物理测试, 2014, 32(6): 10-12. Qiao Bing. Effect of chromium content on oxidation resistance of GH648 alloy[J]. Physics Examination and Testing, 2014, 32(6): 10-12. [6]Xu K D, Ren Z M, Li C J. Progress in application of rare metals in superalloys[J]. Rare Metals, 2014, 33(2): 111-126. [7]李美栓, 张亚明. 活性元素对合金高温氧化的作用机制[J]. 腐蚀科学与防护技术, 2001, 13(6): 333-337. Li Meishuan, Zhang Yaming. A review on effect of reactive elements on oxidations of metals[J]. Corrosion Science and Protection Technology, 2001, 13(6): 333-337. [8]Tortorelli P F, Natesan K. Critical factors affecting the high-temperature corrosion performance of iron aluminides[J]. Materials Science and Engineering A, 1998, 258(1): 115-125. [9]Stringer J. The reactive element effect in high-temperature corrosion[J]. Materials Science and Engineering A, 1989, 120/121: 129-137. [10]Ramanarayanan T A, Ayer R, Petkovic-Luton R, et al. The influence of yttrium on oxide scale growth and adherence[J]. Oxidation of Metals, 1988, 29(5/6): 445-472. [11]Ecer G M, Meier G H. The effect of cerium on the oxidation of Ni-50Cr alloys[J]. Oxidation of Metals, 1979, 13(2): 159-180. [12]Mendis B, Livi K, Hemker K. Observations of reactive element gettering of sulfur in thermally grown oxide pegs[J]. Scripta Materialia, 2006, 55(7): 589-592. [13]Hu Y B, Li Z, Cheng C Q, et al. Oxidation behavior of the nickel-based superalloy DZ125 at 980 ℃[J]. Acta Metallurgica Sinica, 2017, 30(9): 857-862. [14]焦军红, 李 鑫, 刘振宇. 稀土Ce对310S奥氏体耐热不锈钢高温氧化行为的影响[J]. 金属热处理, 2022, 47(1): 120-124.Jiao Junhong, Li Xin, Liu Zhenyu. Effect of rare earth Ce on high temperature oxidation behavior of 310S austenitic heat-resistant stainless steel[J]. Heat Treatment of Metals, 2022, 47(1): 120-124. [15]孙长波, 付广艳, 刘 群. Ni-Cr-Al合金在1000 ℃空气中的氧化[J]. 材料与冶金学报, 2004, 3(4): 313-316. Sun Changbo, Fu Guangyan, Liu Qun. Air oxidation of Ni-Cr-Al alloys at 1000 ℃[J]. Journal of Materials and Metallurgy, 2004, 3(4): 313-316. [16]Heuer A H, Azar Z M, Guhl H, et al. The band structure of polycrystalline Al2O3 and its influence on transport phenomena[J]. Journal of the American Ceramic Society, 2016, 99(3): 733-747. [17]Deng W F, Luo H L, Li S P, et al. Isothermal oxidation behavior of a cast Ni3Al-base superalloy MX246A[J]. Proceedings of Sino-Swedish Structural Materials Symposium, 2007, 14(5): 59-65. [18]Lee D B, Santella M L. High temperature oxidation of Ni3Al alloy containing Cr, Zr, Mo, and B[J]. Materials Science and Engineering A, 2004, 374(1/2): 217-223. [19]郭建亭. 几种微量元素在高温合金中的作用与机理[J]. 中国有色金属学报, 2011, 21(3): 465-475. Guo Jianting. Effects of several minor elements on superalloys and their mechanism[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 465-475. |