[1]宋祥峰. 轮毂轴承的定义、分类和技术发展趋势[J]. 汽车实用技术, 2018, 267(12): 178-180. Song Xiangfeng. The definition, classification and technology development trend of hub bearing[J]. Automobile Applied Technology, 2018, 267(12): 178-180. [2]Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding the factors controlling the hardness in martensitic steels[J]. Scripta Materialia, 2016, 110: 96-100. [3]Brinksmeier E, Sölter J, Grote C. Distortion engineering-identification of causes for dimensional and form deviations of bearing rings[J]. CIRP Annals, 2007, 56(1): 109-112. [4]蔡沛松, 赵海霞, 张军梅, 等. 基于ANSYS的钢板加热过程仿真分析[J]. 中北大学学报(自然科学版), 2022, 43(4): 313-320. Cai Peisong, Zhao Haixia, Zhang Junmei, et al. Simulation analysis of steel plate heating process based on ANSYS[J]. Journal of North University of China (Natural Science Edition), 2022, 43(4): 313-320. [5]沈庆通. 感应热处理的发展回顾与期望[J]. 金属加工(热加工), 2019(7): 3-7. [6]田 华. 感应回火工艺研究[J]. 热处理, 2022, 37(2): 19-22. Tian Hua. Research on induction tempering technology[J]. Heat Treatment, 2022, 37(2): 19-22. [7]Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering[J]. Materials Science and Engineering A, 2014, 618: 112-117. [8]房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420. Fang Yupei, Xie Zhenjia, Shang Chengjia. Effect of induction tempering on carbide precipitation behavior and toughness of a 1000 MPa grade high strength low alloy steel[J]. Acta Metallurgica Sinica, 2014, 50(12): 1413-1420. [9]王宏颖. Q460D高强钢的回火工艺[J]. 金属热处理, 2019, 44(11): 185-187. Wang Hongying. Tempering process of Q460D high strength steel[J]. Heat Treatment of Metals, 2019, 44(11): 185-187. [10]魏文婷, 王瑞强, 赵天翼, 等. GCr15轴承钢快速回火组织和性能的演变研究[J]. 热加工工艺, 2023(18): 124-128. Wei Wenting, Wang Ruiqiang, Zhao Tianyi, et al. Study on rapid tempering microstructure and property evolution of GCr15 bearing steel[J]. Hot Working Technology, 2023(18): 124-128. [11]Spezzapria M, Forzan M, Dughiero F. Numerical simulation of solid-solid phase transformations during induction hardening process[J]. IEEE Transactions on Magnetics, 2015, 52(3): 1-4. [12]Zabett A, Azghandi S H M. Simulation of induction tempering process of carbon steel using finite element method[J]. Materials and Design, 2012, 36: 415-420. [13]Baldan M, Stolte M H, Nacke B, et al. Improving the accuracy of FE simulations of induction tempering toward a microstructure-dependent electromagnetic model[J]. IEEE Transactions on Magnetics, 2020, 56(10): 1-9. [14]Tong D, Gu J, Yang F. Numerical simulation on induction heat treatment process of a shaft part: Involving induction hardening and tempering[J]. Journal of Materials Processing Technology, 2018, 262: 277-289. [15]张鹏飞, 王德成, 程 鹏, 等. 基于电磁热耦合的感应加热65Mn带钢有限元仿真[J]. 材料导报, 2022, 36(12): 154-159. Zhang Pengfei, Wang Decheng, Cheng Peng, et al. Finite element simulation of induction heating 65Mn tape-steel based on electromagnetic thermal coupling[J]. Materials Reports, 2022, 36(12): 154-159. [16]陆文杰. 30CrMnSiNi2A螺纹件局部感应回火工艺模拟研究[D]. 南昌: 南昌航空大学, 2017. Lu Wenjie. Simulation analysis of local induction tempering process of 30CrMnSiNi2A thread parts[D]. Nanchang: Nanchang Hangkong University, 2017. [17]Hömberg D. A mathematical model for induction hardening including mechanical effects[J]. Nonlinear Analysis: Real World Applications, 2004, 5(1): 55-90. [18]Barglik J, Ducki K, Kukla D, et al. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 355(1): 012015. [19]Canale L C F, Yao X, Gu J, et al. A historical overview of steel tempering parameters[J]. International Journal of Microstructure and Materials Properties, 2008, 3(4/5): 474-525. [20]Euser V K, Clarke A J, Speer J G. Rapid tempering: Opportunities and challenges[J]. Journal of Materials Engineering and Performance, 2020, 29: 4155-4161. |