[1]吴 庆. Cr-Ni-Mo-V钢反应堆压力容器大型锻件的综合热处理[J]. 压力容器, 2021, 38(2): 73-79. Wu Qing. Comprehensive heat treatment technology of large Cr-Ni-Mo-V steel forgings for reactor pressure vessel[J]. Pressure Vessel Technology, 2021, 38(2): 73-79. [2]张洪奎. 大型高碳钢锻件的锻造加热[J]. 锻造与冲压, 2013(19): 32, 34, 36, 38. Zhang Hongkui. Forging heating of large high-carbon steel forgings[J]. Forging & Stamping, 2013(19): 32, 34, 36, 38. [3]高家驹. 国内外超高压容器的研究动向[J]. 压力容器, 1994(6): 25-27. [4]Ai J H, Zhao T C, Gao H J, et al. Effect of controlled rolling and cooling on the microstructure and mechanical properties of 60Si2MnA spring steel rod[J]. Journal of Materials Processing Technology, 2005, 160(3): 390-395. [5]Guo J, Hu S P, Mi Z L, et al. Effect of different cooling paths on the microstructure and properties of a plain carbon steel[C]//Materials Science Forum. 2013, 762: 171-175. [6]Rodrigues P C M, Pereloma E V, Santos D B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering A, 2000, 283(1/2): 136-143. [7]刘国晖. 大型锻件锻造的关键技术[J]. 中国机械工程, 2004(22): 63-66. Liu Guohui. Key forging techniques of heavy forgings[J]. China Mechanical Engineering, 2004(22): 63-66. [8]顾剑锋, 韩利战, 李传维. 大型锻件晶粒细化热处理研究进展[J]. 金属热处理, 2019, 44(1): 7-12. Gu Jianfeng, Han Lizhan, Li Chuanwei. Research progress of grain refinement heat treatment for heavy forgings[J]. Heat Treatment of Metals, 2019, 44(1): 7-12. [9]王立民, 邰青安, 杨 刚, 等. 0Cr11Ni2MoVNb钢大型锻件热处理工艺研究[C]//2005中国钢铁年会论文集(第3卷). 2005: 4. [10]王林春, 吴永强, 王开坤, 等. 3Cr2NiMo钢模块锻后热处理的数值模拟[J]. 金属热处理, 2021, 46(3): 184-190. Wang Linchun, Wu Yongqiang, Wang Kaikun, et al. Numerical simulation of heat treatment for 3Cr2NiMo steel module bulk after forging[J]. Heat Treatment of Metals, 2021, 46(3): 184-190. [11]Pigrova G D, Tchyzhik T A. Phase composition of 1.5Cr-1.0Mo-0.3V rotor steel as a factor of cooling rate from austenitic region[J]. Materials at High Temperatures, 1995, 13(3): 121-123. [12]曹 瑞, 孙 会. 淬火过程数值模拟技术的研究进展[J]. 材料导报, 2015, 29(5): 140-144. Cao Rui, Sun Hui. Progress of research on numerical simulation of quenching process[J]. Materials Review, 2015, 29(5): 140-144. [13]崔晓龙, 万妮丽. 大型锻件热处理过程的数值模拟研究[J]. 热处理, 2005(4): 12-16. Cui Xiaolong, Wan Nili. Study on numerical simulation of heat treatment process for heavy forgings[J]. Heat Treatment, 2005(4): 12-16. [14]Fang G, Zeng P. Finite element simulation of metal quenching[J]. Tsinghua Science and Technology, 2004, 9(5): 555-559. [15]赵 欣, 陈正宗, 赵海平. 新型马氏体耐热钢G115大型铸件热处理过程有限元分析[J]. 金属热处理, 2022, 47(2): 229-236. Zhao Xin, Chen Zhengzong, Zhao Haiping. Finite element analysis of novel martensitic heat-resistant steel G115 heavy castings[J]. Heat Treatment of Metals, 2022, 47(2): 229-236. [16]蒋 杰, 胡建军, 刘 妤. 淬火工艺数值模拟研究进展[J]. 化学工程与装备, 2017(6): 208-210. Jiang Jie, Hu Jianjun, Liu Yu. Research progress on numerical simulation of quenching process[J]. Chemical Engineering and Equipment, 2017(6): 208-210. [17]张学飞, 李 卓, 崔 晓. GCr15 轴承套圈热处理变形数值模拟[J]. 轴承, 2020(11): 45-69. Zhang Xuefei, Li Zhuo, Cui Xiao. Numerical simulation on heat treatment deformation of GCr15 bearing rings[J]. Bearing, 2020(11): 45-69. [18]Melvin A. Kinetics of phase change. II transformation-time relations for random distribution of nuclei[J]. The Journal of Chemical Physics, 1940, 8(2): 212. [19]Hildenwall B, Ericsson T. Residual stresses in the soft pearlite layer of carburized steel[J]. Journal of Heat Treating, 1980, 1(3): 3-13. [20]Long S, Liang Y, Jiang Y, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J]. Materials Science and Engineering A, 2016, 676: 38-47. [21]Fan S, Hao H, Meng L, et al. Effect of deep cryogenic treatment parameters on martensite multi-level microstructures and properties in a lath martensite/ferrite dual-phase steel[J]. Materials Science and Engineering A, 2021, 810: 141022. [22]Breumier S, Ostormujof T M, Frincu B, et al. Leveraging EBSD data by deep learning for bainite, ferrite and martensite segmentation[J]. Materials Characterization, 2022, 186: 111805. |