[1]汪正兵, 朱百智, 陈 贺. 风电齿轮热处理技术现状和趋势[J]. 金属热处理, 2020, 45(1): 34-41. Wang Zhengbing, Zhu Baizhi, Chen He. Situation and trend of heat treatment technology in wind power gear[J]. Heat Treatment of Metals, 2020, 45(1): 34-41. [2]徐跃明, 李 俏, 罗新民, 等. 热处理技术进展[J]. 金属热处理, 2015, 40(9): 1-15. Xu Yueming, Li Qiao, Luo Xinmin, et al. Technology progress in heat treatment[J]. Heat Treatment of Metals, 2015, 40(9): 1-15. [3]陈 强, 陈林芳, 杨明华. 18CrNiMo7-6钢的可控气氛高温渗碳工艺[J]. 金属热处理, 2022, 47(4): 231-239. Chen Qiang, Chen Linfang, Yang Minghua. High temperature carburizing process of 18CrNiMo7-6 steel in controlled atmosphere[J]. Heat Treatment of Metals, 2022, 47(4): 231-239. [4]韩颢源, 张子博, 余万华, 等. 扩散时间对20MnCrS5齿轮钢真空渗碳的影响[J]. 金属热处理, 2022, 47(11): 138-142. Han Haoyuan, Zhang Zibo, Yu Wanhua, et al. Effect of diffusion time on vacuum carburizing of 20MnCrS5 gear steel[J]. Heat Treatment of Metals, 2022, 47(11): 138-142. [5]周 武, 王 敏, 赵同新, 等. 离子渗氮温度对Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢渗层组织和性能的影响[J]. 金属热处理, 2022, 47(11): 147-152. Zhou Wu, Wang Min, Zhao Tongxin, et al. Effect of plasma nitriding temperature on the microstructure and properties of nitrided layer on Fe-Cr-Ni-Mn-V precipitation-hardened austenitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(11): 147-152. [6]Hasegawa M, Takeshita K. Strengthening of steel by the method of spraying oxide particles into molten steel stream[J]. Metallurgical and Materials Transactions, 1978, 9(3): 383. [7]李 阳, 侯圣文, 贺尔康, 等. 20MnCr5齿轮钢渗碳层弥散碳化物形成机理[J]. 金属热处理, 2022, 47(12): 196-200. Li Yang, Hou Shengwen, He Erkang, et al. Formation mechanism of dispersed carbide in carburized layer of 20MnCr5 gear steel[J]. Heat Treatment of Metals, 2022, 47(12): 196-200. [8]石巨岩, 于 静, 田晓青, 等. 20CrMnTi钢超饱和渗碳工艺的研究[J]. 热加工工艺, 2010, 39(12): 147-149. Shi Juyan, Yu Jing, Tian Xiaoqing, et al. Study on supersaturated carburizing process of 20CrMnTi steel[J]. Hot Working Technology, 2010, 39(12): 147-149. [9]于忠江, 王殿梁, 刘 杨, 等. H13钢碳化物析出型渗碳(CDC)处理[J]. 材料与冶金学报, 2002(4): 311-316. Yu Zhongjiang, Wang Dianliang, Liu Yang, et al. Carbide dispersion carburizing of steel H13[J]. Journal of Materials and Metallurgy, 2002(4): 311-316. [10]孟献民. 渗碳层高温碳化物的形成机理和获得弥散细小的颗粒状碳化物的工艺方法[J]. 热加工工艺, 1986(1): 59-62. [11]张明皓, 韩颢源, 徐跃明, 等. 真空渗碳18CrNiMo7-6钢中碳化物的析出规律[J]. 金属热处理, 2022, 47(5): 171-176. Zhang Minghao, Han Haoyuan, Xu Yueming, et al. Carbide precipitation law in vacuum carburized 18CrNiMo7-6 steel[J]. Heat Treatment of Metals, 2022, 47(5): 171-176. [12]王硕彬, 丛培武, 陈旭阳, 等. 20CrMoH钢的真空低压渗碳工艺模拟及优化[J]. 金属热处理, 2022, 47(5): 189-193. Wang Shuobin, Cong Peiwu, Chen Xuyang, et al. Simulation and optimization of vacuum low pressure carburizing process of 20CrMoH steel[J]. Heat Treatment of Metals, 2022, 47(5): 189-193. [13]陈旭阳, 丛培武, 范 雷, 等. 基于饱和值调整法的真空低压渗碳工艺计算与验证[J]. 金属热处理, 2020, 45(9): 233-236. Chen Xuyang, Cong Peiwu, Fan Lei, et al. Calculation and verification of vacuum low pressure carburizing process based on saturation value adjustment method[J]. Heat Treatment of Metals, 2020, 45(9): 233-236. |