[1]赵丽娟, 田 震, 郭辰光. 矿用截齿失效形式及对策[J]. 金属热处理, 2015, 40(6): 194-198. Zhao Lijuan, Tian Zhen, Guo Chenguang. Failure modes and countermeasures of a mining pick[J]. Heat Treatment of Metals, 2015, 40(6): 194-198. [2]徐芳芳. 35CrMo截齿材料热处理工艺优化研究[D]. 西安: 西安工业大学, 2018. [3]董 闯, 郑艳敏. 提高采煤机截齿使用寿命工艺方法研究[J]. 煤矿机械, 2020, 41(8): 93-95. Dong Chuang, Zheng Yanmin. Research on process method for increasing service life of shearer pick[J]. Coal Mine Machinery, 2020, 41(8): 93-95. [4]闫献国, 李 帆, 陈 峙, 等. 镐型截齿深冷工艺的多目标优化模型[J]. 金属热处理, 2021, 46(2): 95-99. Yan Xianguo, Li Fan, Chen Zhi, et al. Multi-objective optimization model of deep cryogenic process for conical pick[J]. Heat Treatment of Metals, 2021, 46(2): 95-99. [5]王永刚. 采煤机截齿“零保温”淬火热处理工艺研究[J]. 热加工工艺, 2019, 48(2): 163-166. Wang Yonggang. Study on “zero time holding” quenching heat treatment process of coal mining machine shearer picks[J]. Hot Working Technology, 2019, 48(2): 163-166. [6]宋广衡. 沥青路面铣刨机截齿的失效研究及结构设计[D]. 湘潭: 湘潭大学, 2017. [7]毕凤阳, 刘瑞堂. 沥青砼路面铣刨刀具失效分析[Z]. 2005年全国失效分析学术会议专辑 理化检验(物理分册). 广州. 2005: 455-7 [8]李维维, 柴建革, 杨虎军. 路面冷铣刨机刀具磨损实例分析[J]. 筑路机械与施工机械化, 2014, 31(5): 70-73. Li Weiwei, Cai Jiange, Yang Hujun. Instance analysis of cutter wear of cold milling machine[J]. Road Machinery & Construction Mechanization, 2014, 31(5): 70-73. [9]袁志钟, 段旭斌, 张伯承, 等. 一种兼顾析出强化与下贝氏体相变强化的热处理方法, CN111876569A[P/OL]. [10]Li Q G, Huang X F, Huang W G. Microstructure and mechanical properties of a medium-carbon bainitic steel by a novel quenching and dynamic partitioning (Q-DP) process[J]. Materials Science & Engineering A, 2016, 662: 129-135. [11]Euser V K, Clarke A J, Speer J G. Rapid tempering: Opportunities and challenges[J]. Journal of Materials Engineering and Performance, 2020, 29(7): 4155-4161. [12]冯博楷, 张敬业. 硬化处理对截齿高铬铸铁组织和硬度的影响[J]. 金属热处理, 2019, 44(9): 152-156. Feng Bokai, Zhang Jingye. Effect of hardening treatment on microstructure and hardness of high chromium cast iron for shearer pick[J]. Heat Treatment of Metals, 2019, 44(9): 152-156. [13]郭 蕊, 闫献国, 康文凯, 等. 深冷处理对YG8合金/42CrMo钢钎焊接头冲击性能的影响[J]. 金属热处理, 2019, 44(2): 136-140. Guo Rui, Yan Xianguo, Kang Wenkai, et al. Effect of cryogenic treatment on impact toughness of YG8/42CrMo brazed joints[J]. Heat Treatment of Metals, 2019, 44(2): 136-140. [14]张海东, 闫献国, 董 良, 等. 深冷处理对镐型截齿硬度、耐磨性和冲击性能的影响及其优化[J]. 金属热处理, 2022, 47(12): 84-89. Zhang Haidong, Yan Xianguo, Dong Liang, et al. Effect of cryogenic treatment on hardness, wear resistance and impact property of conical pick and its optimization[J]. Heat Treatment of Metals, 2022, 47(12): 84-89. [15]汪旭超, 从善海, 韩 芳, 等. 截齿齿体碳硼复合渗的性能研究[J]. 矿山机械, 2011, 39(7): 18-21. Wang Xuchao, Cong Shanhai, Han Fang, et al. Study on wear resistance of carburized and boronized cutting pick[J]. Mining & Processing Equipment, 2011, 39(7): 18-21. [16]李 威, 黄圣玲, 迟长志, 等. 35CrMnSi钢采煤机截齿的等温淬火工艺[J]. 金属热处理, 2009, 34(10): 80-82. Li Wei, Huang Shengling, Chi Changzhi, et al. Austempering process of 35CrMnSi steel coal mining machine cutting picks[J]. Heat Treatment of Metals, 2009, 34(10): 80-82. [17]陈俊丹, 莫文林, 王 培, 等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48(10): 1186-1193. Chen Jundan, Mo Wenlin, Wang Pei, et al. Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metallurgica Sinica, 2012, 48(10): 1186-1193. [18]文 超, 董 雯, 梁会雷, 等. 42CrMo钢的等温淬火和回火[J]. 金属热处理, 2014, 39(12): 50-54. Wen Chao, Dong Wen, Liang Huilei, et al. Isothermal quenching and tempering of 42CrMo steel[J]. Heat Treatment of Metals, 2014, 39(12): 50-54. [19]席志伟, 罗红梅, 孙国栋. 预备热处理对A-F区亚温淬火-回火的42CrMo钢组织和性能的影响[J]. 特殊钢, 2019, 40(4): 43-47. Xi Zhiwei, Luo Hongmei, Sun Guodong. Effect of conditioning heat treatment on structure and properties of qunched from A-F dual phase range-tempered 42CrMo steel[J]. Special Steel, 2019, 40(4): 43-47. [20]李 凯. 42CrMo钢的贝氏体组织调控与性能优化[D]. 石家庄: 河北科技大学, 2019. [21]Speer J A A, Matlock, D K A, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [22]徐祖耀. 淬火-碳分配-回火(Q-P-T)工艺浅介[J]. 金属热处理, 2009, 34(6): 1-8. Xu Zuyao. A brief introduction to quenching-partitioning-tempering (Q-P-T) process[J]. Heat Treatment of Metals, 2009, 34(6): 1-8. [23]Xiong X, Chen B, Huang M, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2012, 68(5): 321-324. [24]Diego-Calder D, Dorien D K, Jon M, et al. Effect of Q&P parameters on microstructure development and mechanical behaviour of Q&P steels[J]. Revista de metalurgia, 2015, 51(1): 35. [25]Zhao P, Gao G, Misra R D K, et al. Effect of microstructure on the very high cycle fatigue behavior of a bainite/martensite multiphase steel[J]. Materials Science & Engineering A, 2015, 630: 1-7. [26]方鸿生, 郑燕康, 周 欣. 中碳贝氏体/马氏体复相组织强韧性的研究[J]. 金属热处理学报, 1986(1): 10-18. Fang Hongsheng, Zheng Yankang, Zhou Xin. The strength and toughness of the air-cooled microstructure of medium carbon bainite/martensite dual phase[J]. Ansactions of Materials and Heat Treatment, 1986(1): 10-18. [27]Bhadeshia H, Edmonds D V. The mechanism of bainite formation in steels[J]. Acta Metallurgica, 1980, 28(9): 1265-1273. |