[1]罗迪强, 余音宏, 张真铭, 等. 钇基稀土对高强船板钢夹杂物及低温冲击性能的影响[J]. 金属热处理, 2022, 47(3): 142-146. Luo Diqiang, Yu Yinhong, Zhang Zhenming, et al. Effect of yttrium-based rare earth on inclusions and cryogenic temperature impact property of high strength shipbuilding steel[J]. Heat Treatment of Metals, 2022, 47(3): 142-146. [2]张艳艳. 海上船舶碰撞事故态势研究[D]. 厦门: 集美大学, 2017. [3] Okawa T, Ichikawa K, Yanagita K. Development andadoption of steel plate (NSafeTM-Hull) for shipbuilding with improved collision safety[J]. Nippon Steel & Sumitomo Metal Technical Report, 2015, 110: 30-35. [4] Wang K, Wu L, Li Y Z, et al. Experimental study on low temperature fatigue performance of polar icebreaking ship steel[J]. Ocean Engineering, 2020, 216(3): 107789. [5] Song Z, Hu Z, Ringsberg J W. Criticalvoid volume fraction identification based on mesoscopic damage model for NVA shipbuilding steel[J]. Journal of Marine Science and Application, 2019, 18(4): 444-454. [6] Nataro G, Brinchmann K, Steen E, et al. Evaluation of the fendering capabilities of the SPS for an offshore application[C]//Proceedings of 6th International Conference on Collision and Grounding of Ships and Offshore Structures(ICCGS). Trondheim, Norway, 2013: 85-92. [7] Schttelndreyer M, Tautz I, Fricke W, et al. Side structure filled with multicellular glass hollow spheres in a quasi-static collision test[C]//Proceedings of 6th International Conference on Collision and Grounding of Ships and Offshore Structures(ICCGS). Trondheim, Norway, 2013: 101-108. [8] Rudan S, A??i? B, Vi?i? I. Crashworthiness study of LPG ship with type C tanks[C]//Proceedings of 6th International Conference on Collision and Grounding of Ships and Offshore Structures(ICCGS). Trondheim, Norway, 2013: 331-338. [9] Hiroaki S. Guidelines for Use of Highly Ductile Steel[S/OL]. https://www.classnk.com/hp/en/index.html, 2020. [10] Lin Y C, Chen M S, Zhong J. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel[J]. Journal of Materials Processing Technology, 2008, 205(1-3): 308-315. [11]王志武, 宋 涛. 不同含量Cr、Ni、Nb的HR3C钢热力学平衡相分析[J]. 武汉大学学报: 工学版, 2020, 53(11): 1028-1034. Wang Zhiwu, Song Tao. Thermodynamic equilibrium phase analysis of HR3C steel with different Cr, Ni and Nb contents[J]. Engineering Journal of Wuhan University, 2020, 53(11): 1028-1034. [12] Guan M F, Yu H. In-situ investigation on the fatigue crack propagation behavior in ferrite-pearlite and dual-phase ferrite-bainite low carbon steels[J]. Science China (Technological Sciences), 2013, 56(1): 71-79. [13] Zhu W T, Cui J J, Chen Z Y, et al. Correlation of microstructure feature with impact fracture behavior in a TMCP processed high strength low alloy construction steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. [14] Sun D, Liu C, Long X, et al. Effect of introduced vanadium carbide at the bay region on bainite transformation, microstructure and mechanical properties of high-carbon and high-silicon steel[J]. Materials Science and Engineering A, 2021, 811(1): 141055. [15] 熊维亮, 严立新, 梁 亮, 等. 微合金化技术开发800 MPa级高韧直缝焊管钢[J]. 金属热处理, 2023, 48(3): 226-229. Xiong Weiliang, Yan Lixin, Liang Liang, et al. Development of 800 MPa grade microalloyed steel for high toughness longitudinal welded pipe[J]. Heat Treatment of Metals, 2023, 48(3): 226-229. [16] 王东梅, 赵磊城, 陈 林, 等. 淬火冷速对过共析轨钢中珠光体组织的影响[J]. 金属热处理, 2021, 46(3): 12-17. Wang Dongmei, Zhao Leicheng, Chen Lin, et al. Effect of quenching cooling rate on pearlite microstructure of hypereutectoid rail steel[J]. Heat Treatment of Metals, 2021, 46(3): 12-17. [17] 牛建宇. 高碳微合金珠光体钢轨钢热处理工艺及组织性能研究[D]. 包头: 内蒙古科技大学, 2021. [18] Müller M, Britz D, Staudt T, et al. Microstructural classification of bainitic subclasses in low-carbon multi-phase steels using machine learning techniques[J]. Metals, 2021, 11: 1836-1852. [19]蒋宏利, 王东梅, 王业双, 等. 轧后热处理对珠光体钢轨相变组织及硬度的影响[J]. 金属热处理, 2023, 48(3): 19-24. Jiang Hongli, Wang Dongmei, Wang Yeshuang, et al. Effect of post rolling heat treatment on phase transformation microstructure and hardness of pearlitic steel rail[J]. Heat Treatment of Metals, 2023, 48(3): 19-24. [20] Bandi B, Krevel J V, Srirangam P. Interaction between ferrite recrystallization and austenite formation in dual-phase steel manufacture[J]. Metallurgical and Materials Transactions A, 2022, 53(4): 1379-1393. |