[1]郝玉喜, 谢方亮, 李 岩, 等. 时效制度对6111铝合金轧制板材性能的影响[J]. 热处理技术与装备, 2020, 41(2): 1-5. Hao Yuxi, Xie Fangliang, Li Yan, et al. Effect of aging system on properties of 6111 aluminum alloy rolled sheet[J]. Heat Treatment Technology and Equipment, 2020, 41(2): 1-5. [2]傅 垒, 王宝雨, 马闻宇. 6111铝合金固溶工艺多目标优化[J]. 中国有色金属学报, 2014, 24(5): 1127-1132. Fu Lei, Wang Baoyu, Ma Wenyu. Multi-objective optimization of solution process of 6111 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1127-1132. [3]丁向群, 何国求, 陈成澍, 等. 6000系汽车车用铝合金的研究应用进展[J]. 材料科学与工程学报, 2005, 23(2): 302-305. Ding Xiangqun, He Guoqiu, Chen Chengsu, et al. Advance in studies of 6000 aluminum alloy for automobile[J]. Journal of Materials Science and Engineering, 2005, 23(2): 302-305. [4]高琪妹, 于晓丹, 熊晓航. 预时效对6111铝合金时效硬化的影响[J]. 热加工工艺, 2008, 37(22): 67-69. Gao Qimei, Yu Xiaodan, Xiong Xiaohang. Effects of pre-aging on age-hardening of 6111 aluminum alloy[J]. Hot Working Technology, 2008, 37(22): 67-69. [5]孔德明. Cu元素及热处理工艺对6016铝合金组织及性能的影响[D]. 广西: 广西大学, 2019. Kong Deming. Effect of Cu element and heat treatment process on microstructure and properties of 6016 aluminum alloy[D]. Guangxi: Guangxi University, 2019. [6]熊自柳, 齐建军, 刘宏强, 等. 新能源汽车及其轻量化技术发展现状与趋势[J]. 河北冶金, 2020(7): 1-9. Xiong Ziliu, Qi Jianjun, Liu Hongqiang, et al. Research status and development trend of new energy car and its lightweight technologies[J]. Hebei Metallurgy, 2020(7): 1-9. [7]高琪妹, 杨静生, 于晓丹, 等. 6111铝合金板材加工过程中组织的演变[J]. 热加工工艺, 2008, 37(24): 28-30. Gao Qishu, Yang Jingsheng, Yu Xiaodan, et al. Microstructure evolution of 6111 aluminum alloy sheet during manufacturing process[J]. Hot Working Technology, 2008, 37(24): 28-30. [8]张仕娇. 热处理对汽车车身用6022、6111铝合金微观组织及性能影响[D]. 北京: 北京有色金属研究总院, 2013. Zhang Shijiao. The effect of heat treatment on microstructure and properties of 6022 and 6111 aluminum alloy for automotive body sheet[D]. Beijing: General Research Institute for Nonferrous Metals, 2013. [9] Mrowka-Nowotnik G, Sieniawski J. Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminum alloys[J]. Journal of Materials Processing Technology, 2005, 162/163: 367-372. [10]成卫兵, 房继业. 化学成分对6082铝合金晶间腐蚀的影响[J]. 铝加工, 2012(2): 44-46. Cheng Weibing, Fang Jiye. Effect of chemical composition on intergranular corrosion of 6082 aluminum alloy[J]. Aluminum Fabrication, 2012(2): 44-46. [11]刘胜胆, 陈小连, 张端正, 等. 固溶温度对6082铝合金显微组织与性能的影响[J]. 中国有色金属学报, 2015, 25(3): 582-588. Liu Shengdan, Chen Xiaolian, Zhang Duanzheng, et al. Effect of solution heat treatment temperature on microstructure and properties of 6082 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3): 582-588. [12]陈 杨, 田 妮, 赵 刚, 等. 预先热处理对6111铝合金冷轧及再结晶织构的影响[J]. 中国有色金属学报, 2006, 16(8): 1411-1416. Chen Yang, Tian Ni, Zhao Gang, et al. Effect of pre-heat treatments on cold rolling and recrystallization textures in Al alloy 6111[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(8): 1411-1416. [13]曹培元, 袁 峰, 李瑞雷, 等. 双级时效对Al-Mg-Si-Cu合金力学性能和耐晶间腐蚀性能的影响[J]. 上海金属, 2022, 44(1): 50-55. Cao Peiyuan, Yuan Feng, Li Ruilei, et al. Effect of two-step aging on mechanical properties and intergranular corrosion resistance of Al-Mg-Si-Cu alloy[J]. Shanghai Metals, 2022, 44(1): 50-55. [14]王启盼. 汽车车身用6016铝合金组织织构演变与性能研究[D]. 沈阳: 东北大学, 2019. Wang Qipan. Study on microstructure, texture evolution and properties of 6016 aluminum alloy for automobile body[D]. Shenyang: Northeastern University, 2019. [15]范贞贞. AA6014 铝合金退火再结晶机制及成形性能研究[D]. 重庆: 重庆大学, 2018. Fan Zhenzhen. Study on recrystallization mechanism during annealing and formability of AA6014 aluminum alloy[D]. Chongqi: Chongqi University, 2018. [16]段晓鸽, 江海涛, 米振莉, 等. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141. Duan Xiaoge, Jiang Haitao, Mi Zhenli, et al. Effect of rolling mode on microstructure and plastic anisotropy of 6016 aluminum alloy sheet[J]. Journal of Materials Engineering, 2020, 48(8): 134-141. [17] Samajar I, Verlinden B, Rabet L, et al. Recrystallization texture in a cold rolled commercial purity aluminum: On the plausible macro-and micro-mechanisms[J]. Materials Science and Engineering A, 1999, 266(1): 146-154. [18]张 放, 刘艳芬, 李继林, 等. 固溶温度对6181A铝合金板材显微组织和性能的影响[J]. 铸造技术, 2017, 38(5): 1042-1046. Zhang Fang, Liu Yanfen, Li Jilin, et al. Effect of solution treatment temperature on microstructure and properties of 6181A aluminum alloy[J]. Foundry Technology, 2017, 38(5): 1042-1046. [19]盛晓菲, 杨文超, 汪明朴, 等. 人工时效对6005A铝合金晶间腐蚀性能的影响[J]. 中国有色金属学报, 2012, 22(8): 2174-2180. Sheng Xiaofei, Yang Wenchao, Wang Mingpu, et al. Effect of artificial ageing on intergranular corrosion of 6005A Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8): 2174-2180. [20]王芝秀, 李 海, 顾建华, 等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响[J]. 中国有色金属学报, 2012, 22(12): 3348-3355. Wang Zhixiu, Li Hai, Gu Jianhua, et al. Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(12): 3348-3355. [21]申澎洋, 唐建国, 叶凌英, 等. 组织不均匀性对6005A铝合金晶间腐蚀性能的影响[J]. 材料研究学报, 2018, 32(10): 751-758. Shen Pengyang, Tang Jianguo, Ye Lingying, et al. Effect of microstructure heterogeneity on intergranular corrosion susceptibility of Al-alloy 6005A[J]. Chinese Journal of Materials Research, 2018, 32(10): 751-758. [22]何福萍, 刘 峰, 李建云, 等. 固溶方式及时效对Al-Mg-Si-Cu合金组织及性能的影响[J]. 有色金属科学与工程, 2013(1): 44-48 He Fuping, Liu Feng, Li Jianyun, et al. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013(1): 44-48. |