[1]Fischer O, Schneider J. Influence of deformation process on the improvement of non-oriented electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2003, 254: 302-306. [2]龚 坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展[J]. 材料工程, 2015, 43(6): 102-112. Gong Jian, Luo Haiwen. Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles[J]. Journal of Materials Engineering, 2015, 43(6): 102-112. [3] An L Z, Wang Y, Wang G D, et al. Fabrication of high-performance low silicon non-oriented electrical steels by a new method: Low-finishing-temperature hot rolling combined with batch annealing[J]. Journal of Magnetism and Magnetic Materials, 2022, 546: 168907. [4]Huneus H, Günther K, Kochmann T, et al. Nonoriented magnetic steel with improved texture and permeability[J]. Journal of Materials Engineering and Performance, 1993, 2(2): 199-203. [5] Schulte M, Steentjes S, Leuning N, et al. Effect of manganese in high silicon alloyed non-oriented electrical steel sheets[J]. Journal of Magnetism and Magnetic Materials, 2019, 477: 372-381. [6]张兴海, 杨 超, 贾宝瑞, 等. 退火温度对双辊薄带连铸高强度无取向硅钢组织和性能的影响[J]. 钢铁研究学报, 2020, 32(11): 1000-1005. Zhang Xinhai, Yang Chao, Jia Baorui, et al. Effect of annealing temperature on microstructure and properties of high strength non-oriented silicon steel produced by twin-roll casting process[J]. Journal of Iron and Steel Research, 2020, 32(11): 1000-1005. [7]杨经富, 张迎晖, 秦 镜, 等. 成品厚度对高牌号无取向电工钢组织、织构和磁性能的影响[J]. 有色金属科学与工程, 2020, 11(3): 73-79. Yang Jinfu, Zhang Yinghui, Qin Jing, et al. Effect of final thickness on the microstructure, texture and magnetic properties of high-grade non-oriented electrical steel sheets[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 73-79. [8]于 雷, 罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300. Yu Lei, Luo Haiwen. Effect of partial recrystallization annealing on magnetic properties and mechanical properties of non-oriented silicon steel[J]. Acta Metallurgica Sinica, 2020, 56(3): 291-300. [9]彭宇凡, 王子豪, 宋新莉, 等. 0.3 mm厚的高强无取向电工钢的退火组织与性能[J]. 材料热处理学报, 2022, 43(1): 99-105. Peng Yufan, Wang Zihao, Song Xinli, et al. Annealing microstructure and properties of 0.3 mm thickness high strength non-oriented electrical steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(1): 99-105. [10]陆佳栋, 吴圣杰, 岳重祥, 等. 二次退火温度对无取向硅钢组织和磁性能的影响[J]. 金属热处理, 2022, 46(3): 67-71. Lu Jiadong, Wu Shengjie, Yue Chongxiang, et al. Effect of secondary annealing temperature on microstructure and magnetic properties of non-oriented silicon steel[J]. Heat Treatment of Metals, 2022, 46(3): 67-71. [11]Lee K M, Park S Y, Huh M Y, et al. Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15%Si[J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 324-332. [12] De Campos M F, Teixeira J C, Landgraf F J G. The optimum grain size for minimizing energy losses in iron[J]. Journal of Magnetism and Magnetic Materials, 2006, 301(1): 94-99. [13]张正贵, 王大鹏. 无取向硅钢的织构与磁性[M]. 北京: 冶金工业出版社, 2012. [14]毛卫民, 杨 平. 电工钢的材料学原理[M]. 北京: 高级教育出版社, 2013. [15]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. [16]谯德高, 赵小龙, 狄彦军, 等. 退火工艺对平整轧制后50W800无取向硅钢磁性能的影响[J]. 金属热处理, 2022, 47(11): 117-121. Qiao Degao, Zhao Xiaolong, Di Yanjun, et al. Effect of annealing process on magnetic properties of flattening rolled 50W800 non-oriented silicon steel[J]. Heat Treatment of Metals, 2022, 47(11): 117-121. |