[1] 陈玉勇, 苏勇君, 孔凡涛. TiAl金属间化合物制备技术的研究进展[J]. 稀有金属材料与工程, 2014, 43(3): 757-762. Chen Yuyong, Su Yongjun, Kong Fantao. Research progress of TiAl intermetallic compound preparation technology[J]. Rare Metal Materials and Engineering, 2014, 43(3): 757-762. [2] 李金山, 张铁邦, 常 辉, 等. TiAl基金属间化合物的研究现状与发展趋势[J]. 中国材料进展, 2010, 29(3): 1-5. Li Jinshan, Zhang Tiebang, Chang Hui, et al. Recentachievements and future directions of TiAl-based intermetallic compounds[J]. Materials China, 2010, 29(3): 1-5. [3] Wang J, Kong L, Li T, et al. Oxidation behavior of thermal barrier coatings with a TiAl3 bond coat on γ-TiAl alloy[J]. Journal of Thermal Spray Technology, 2015, 24(3): 467-475. [4]梁月慧, 祁文军. 孔洞式缺陷对γ-TiAl合金断裂行为的影响[J]. 金属热处理, 2023, 48(2): 295-302. Liang Yuehui, Qi Wenjun. Effect of hole defect on fracture behavior of γ-TiAl alloy[J]. Heat Treatment of Metals, 2023, 48(2): 295-302. [5]黄庆奕, 易 元. 扩散时间对W在TiAl合金中扩散行为的影响[J]. 金属热处理, 2020, 45(11): 94-98. Huang Qingyi, Yi Yuan. Effect of diffusion time on diffusion behavior of tungsten in TiAl alloy[J]. Heat Treatment of Metals, 2020, 45(11): 94-98. [6]杨 康, 孙红亮, 陈志元, 等. 镀镍碳纳米管/TiAl复合材料的制备与性能[J]. 金属热处理, 2019, 44(10): 166-169. Yang Kang, Sun Hongliang, Chen Zhiyuan, et al. Preparation and properties of Ni-CNTS/TiAl composite materials[J]. Heat Treatment of Metals, 2019, 44(10): 166-169. [7] Liu N, Li Z, Xu W Y, et al. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy[J]. Rare Metals, 2017, 36(4): 236-241. [8] 张 宇, 王晓鹏, 孔凡涛, 等. 合金成分对TiAl合金热变形加工影响的研究进展[J]. 稀有金属材料与工程, 2017, 46(11): 3570-3576. Zhang Yu, Wang Xiaopeng, Kong Fantao, et al. Effects of alloying additions on hot deformation processing of TiAl alloys[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3570-3576. [9] Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy[J]. Intermetallics, 2008, 16(6): 827-833. [10] 陈玉勇, 杨 非, 孔凡涛, 等. TiAl合金的热加工、组织和性能[J]. 中国材料进展, 2010, 29(3): 12-17, 5. Chen Yuyong, Yang Fei, Kong Fantao, et al. Processing, microstructure and properties of Ti-43Al-9V-0.3Y alloy[J]. China Advances in Materials, 2010, 29(3): 12-17, 5. [11] Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J]. Intermetallics, 2011, 19(2): 131-136. [12] 刘 杰, 薛祥义, 杨劼人. 全片层组织TiAl-Nb合金的高温氧化行为及氧化层结构表征[J]. 稀有金属材料与工程, 2015, 44(8): 1942-1947. Liu Jie, Xue Xiangyi, Yang Jieren. Oxidation behavior and oxide scale characteristics of TiAl-Nb alloy with full lamellar microstructure at high temperature[J]. Rare Metal Materials and Engineering, 2015, 44(8): 1942-1947. [13] 田宗军, 高雪松, 黄因慧, 等. TiAl合金表面等离子喷涂MCrAlY涂层热腐蚀行为研究[J]. 稀有金属材料与工程, 2010, 39(8): 1439-1442. Tian Zongjun, Gao Xuesong, Huang Yinhui, et al. Study on hot corrosion behavior of plasma-sprayed NiCoCrAl-Y2O3 coating on TiAl alloy surface[J]. Rare Metal Materials and Engineering, 2010, 39(8): 1439-1442. [14] 刘淑敏. 离子注入技术的应用和发展[J]. 航空精密制造技术, 1990(3): 28-31. Liu Shumin. Application and development of ion injection technology[J]. Aerospace Precision Manufacturing Technology, 1990(3): 28-31. [15] 唐紫苑, 张淑婷, 杜开平, 等. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(S1): 389-394. Tang Ziyuan, Zhang Shuting, Du Kaiping, et al. Application of embedding and infiltration technology in nickel-based high-temperature alloys[J]. Materials Reports, 2021, 35(S1): 389-394. [16] Hu Jianjun, Liao Jing, Yang Xian, et al. Microstructure and properties of Al-coating on AZ31 magnesium alloy prepared by pack-cementation[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(2): 493-502. [17] 倪立勇, 杨震晓, 马康智, 等. 低压等离子喷涂TaSi2/MoSi2涂层组织结构及性能研究[J]. 热喷涂技术, 2020, 12(3): 70-75. Ni Liyong, Yang Zhenxiao, Ma Kangzhi, et al. Microstructure andproperties of TaSi2/MoSi2 coating fabricated by low pressure plasma spray[J]. Thermal Spraying Technology, 2020, 12(3): 70-75. [18] 贲能军, 王宜君, 王其松, 等. Ti6Al4V合金表面等离子渗Mo及其力学性能研究[J]. 热加工工艺, 2014, 43(2): 135-138. Ben Nengjun, Wang Yijun, Wang Qisong, et al. Study on mechanical properties of Ti6Al4V alloy with surface plasma Mo penetration[J]. Hot Working Technology, 2014, 43(2): 135-137. [19] 吴志军, 颜建辉. 渗硅对Mo-12Si-8.5B-(8Cr)合金抗高温氧化性能的影响[J]. 腐蚀科学与防护技术, 2018, 30(4): 419-425. Wu Zhijun, Yan Jianhui. Influence of siliconizing on high temperature oxidation behavior of Mo-12Si-8.5B-(8Cr) alloys[J]. Corrosion Science and Protection Technology, 2018, 30(4): 419-425. [20] 李涌泉, 梁国栋, 秦 春, 等. 钽合金表面硅化物渗层的高温抗氧化性能[J]. 稀有金属, 2021, 45(9): 1148-1152. Li Yongquan, Liang Guodong, Qin Chun, et al. High temperature oxidation resistance of Si-Y Co-deposition coating on tantalum[J]. Rare Metals, 2021, 45(9): 1148-1152. [21] 刘圣明, 孙培勇. 粉末硼铝共渗层的显微组织和性能[J]. 新技术新工艺, 1990(1): 3-5. [22] Alfeu Saraiva Ramos, Carlos Angelo Nunes, Gilberto Carvalho Ocelot. On the peritectoid Ti3Si formation in Ti-Si alloys[J]. Materials Characterization, 2006, 56(2): 107-111. [23] Ahmadi H, Li D Y. Beneficial effects of yttrium on mechanical properties and high-temperature wear behavior of surface aluminized 1045 steel[J]. Wear, 2003, 255(7): 933-942. |