[1] Cao Z, Liu T, Yu F, et al. Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel[J]. International Journal of Fatigue, 2020, 131: 105351. [2] Bambach M. Implications from the Poliak-Jonas criterion for the construction of flow stress models incorporating dynamic recrystallization[J]. Acta Materialia, 2013, 61(16): 6222-6233. [3] Puchi-Cabrera E S, Guérin J D, Barbier D, et al. Plastic deformation of structural steels under hot-working conditions[J]. Materials Science and Engineering A, 2013, 559: 268-75. [4] Li H Y, Li Y H, Wang X F, et al. A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel[J]. Material and Design, 2013, 49: 493-501. [5]郭俊锋, 周旭东, 李 汉. 铸态27SiMn钢热变形行为及热加工图[J]. 材料热处理学报, 2014, 35(12): 128-133. Guo Junfeng, Zhou Xudong, Li Han. Hot deformation behavior and processing maps of as-cast 27SiMn steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 128-133. [6] Liu Y, Hu R, Li J S, et al. Hot working characteristic of as-cast and homogenized Ni-Cr-W surperalloy[J]. Materials Science and Engineering A, 2009, 508(1): 141-147. [7]朱利敏, 文九巴. 一种铌微合金钢热变形过程中的动态再结晶[J]. 热加工工艺, 2011, 40(10): 53-56. Zhu Limin, Wen Jiuba. Dynamic recrystallization behavior of Nb micro-alloyed steel during hot deformation[J]. Hot Working Technology, 2011, 40(10): 53-56. [8]薛春芳, 王新华, 辛义德. 含铌微合金钢强韧化机理[J]. 金属热处理, 2003, 28(5): 15-17, 26. Xue Chunfang, Wang Xinhua, Xin Yide. Strengthening and toughening mechanism of microalloyed steel[J]. Heat Treatment of Metals, 2003, 28(5): 15-17, 26. [9]付俊岩. Nb微合金化和含铌钢的发展及技术进步[J]. 钢铁, 2005, 40(8): 1-6. Fu Junyan. Development history of Nb-microalloying technology and progress of Nb-microalloyed steel[J]. Iron and Steel, 2005, 40(8): 1-6. [10]Jonas J J , Sellars C M , Tegart W J M . Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24. [11]Sellars C M, Mctegart W J. Study on the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14: 1136-1140. [12]Wang J, Chen J, Zhao Z, et al. Modeling of microst-ructural evolution in microalloyed steel during hot forging process[J]. Acta Metallurgica Sinica, 2006, 19(4): 279-286. [13]Zener C, Hollomon H. Effect of strain-rate upon the plastic flow of steel[J]. Journal Application Physics, 1944, 15(l): 22-27. [14]雍岐龙. 钢铁中的第二相[M]. 北京: 冶金工业出版社, 2006. Yong Qilong. Second Phases in Structural Steels[M]. Beijing: Metallurgical Industry Press, 2006. [15]万荣春, 于 淼. 铌对低碳钢奥氏体的变形及动态回复再结晶的影响[J]. 热加工工艺, 2015, 44(2): 115-117, 120. Wan Rongchun, Yu Miao. Effects of Nb on austenite dynamic recovery and dynamic recrystallization of low-carbon steels[J]. Hot Working Technology, 2015, 44(2): 115-117, 120. [16] Hodgson P D, Zahiri S H, Whale J J. The static and metadynamic recrystallization behavior of an X60 Nb microalloyed steel[J]. Transactions of the Iron and Steel Institute of Japan, 2004, 44(7): 1224-1229. [17] Cho S H, Kang K B, Jonas J J. The dynamic static and metadynamic recrystallization of a Nb-microalloyed steel[J]. ISIJ International, 2001, 41(1): 63-69. [18] 赵国丹. AZ31镁合金热变形力学行为和动态再结晶的研究[D]. 重庆: 重庆大学, 2005. Zhao Guodan. Study on thermal deformation mechanical behavior and dynamic recrystallization of AZ31 magnesium alloy[D]. Chongqing: Chongqing University, 2005. [19]Ji G L, Li F G, Li Q H, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behavior in Aermet100 steel[J]. Materials Science and Engineering A, 2011, 528(13/14): 4774-4782. [20]Chai R X, Guo C, Yu L. Two flowing stress models for hot deformation of XC45 steel at high temperature[J]. Materials Science and Engineering A, 2012, 534: 101-110. |