[1]Cai Yangchuan, Chen Yao, Luo Zhen, et al. Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology[J]. Materials & Design, 2017, 133(5): 91-108. [2]高雪松, 田宗军, 沈理达, 等. 激光熔覆Al2O3-13%TiO2陶瓷层制备及其抗热震性能[J]. 中国激光, 2012, 39(2): 85-90. Gao Xuesong, Tian Zhongjun, Shen Lida, et al. Study on Al2O3-13%TiO2 coatings prepared by laser cladding and thermal shock resistance[J]. Chinese Journal of Lasers, 2012, 39(2): 85-90. [3]冯淑容, 张述泉, 王华明. 钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性[J]. 中国激光, 2012, 39(2): 60-65. Feng Shurong, Zhang Shuquan, Wang Huaming. Wear resistance of laser clad hard particles reinforced intermetallic composite coating on TA15 alloy[J]. Chinese Journal of Lasers, 2012, 39(2): 60-65. [4]李嘉宁, 巩水利, 王西昌, 等. TA15-2合金表面激光熔覆Ni基涂层物理与表面性能[J]. 中国激光, 2013, 40(11): 120-125. Li Jianing, Gong Shuili, Wang Xichang, et al. Physical and surface performance of laser clad Ni based coating on a TA15-2 alloy[J]. Chinese Journal of Lasers, 2013, 40(11): 120-125. [5]祝柏林, 胡木林, 陈 俐, 等. 激光熔覆层开裂问题的研究现状[J]. 金属热处理, 2000, 25(7): 1-4. Zhu Bolin, Hu Mulin, Chen Li, et al. Research status of cracking in laser cladding layer[J]. Heat Treatment of Metals, 2000, 25(7): 1-4. [6]张 坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势[J]. 热加工工艺, 2013, 42(6): 131-134, 139. Zhang Jian, Wu Wenni, Zhao Longzhi, et al. Research progress and development trend of laser cladding[J]. Hot Working Technology, 2013, 42(6): 131-134, 139. [7]刘海青, 葛 超, 王志文, 等. 激光熔覆复合涂层裂纹控制研究进展[J]. 金属热处理, 2018, 43(8): 228-232. Liu Haiqing, Ge Chao, Wang Zhiwen, et al. Research progress on crack control of laser clad composite coating[J]. Heat Treatment of Metals, 2018, 43(8): 228-232. [8]Ebrahimnia M, Malek G F, Gholizade S, et al. Effect of cooling rate and powder characteristics on the soundness of heat affected zone in powder welding of ductile cast iron[J]. Materials and Design, 2012, 33: 551-556. [9]钟敏霖, 刘文今. Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究[J]. 中国激光, 2002, 29(11): 1031-1036. Zhong Minlin, Liu Wenjin. Comparative research on cracking tendency in power feeding laser cladding Stellite and NiCrSiB alloys[J]. Chinese Journal of Lasers, 2002, 29(11): 1031-1036. [10]Wang Dongsheng, Liang Erjun, Chao Mingju, et al. Investigation on the microstructure and cracking susceptibility of laser-clad V2O5/NiCrBSi Calloy coatings[J]. Surface and Coatings Technology, 2008, 202(8): 1371-1378. [11]杨 伟, 曾大新, 刘建永, 等. 激光熔覆H13钢的裂纹敏感性及形成机理[J]. 金属热处理, 2020, 45(6): 206-211. Yang Wei, Zeng Daxin, Liu Jianyong, et al. Crack sensitivity and formation mechanism of laser clad H13 steel[J]. Heat Treatment of Metals, 2020, 45(6): 206-211. [12]余 廷, 邓琦林, 张 伟, 等. 激光熔覆NiCrBSi合金涂层的裂纹形成机理[J]. 上海交通大学学报, 2012, 46(7): 1043-1048. Yu Ting, Deng Qilin, Zhang Wei, et al. Study on cracking mechanism of laser clad NiCrBSi coating[J]. Journal of Shanghai Jiaotong University, 2012, 46(7): 1043-1048. [13]Xu P Y, Liu Y C, Yi P, et al. Research on variation and stress status of graphite in laser cladding process of grey cast iron[J]. Materials Science and Technology, 2014, 30(14): 1728-1734. [14]罗西希. 激光熔覆铁铝基涂层的制备及其增韧和抗磨机理研究[D]. 南京: 南京航空航天大学, 2018. Luo Xixi. Preparation of Fe-Al based laser cladding coating and its toughening and anti-wearing mechanism[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. [15]刘贵仲, 钟文华, 高 原. 激光熔覆涂层缺陷的形成及防治[J]. 表面技术, 2012, 41(5): 89-92. Liu Guizhong, Zhong Wenhua, Gao Yuan. Formation and resolving method of the structure defect about laser cladding coatings[J]. Surface Technology, 2012, 41(5): 89-92. [16]Smurov Igor. Laser cladding and laser assisted direct manufacturing[J]. Surface & Coatings Technology, 2008, 202(18): 4496-4502. [17]Wu Xinhua, Liang Jing, Mei Junfa, et al. Microstructures of laser-deposited Ti-6Al-4V[J]. Materials & Design, 2004, 25(2): 137-144. [18]王 伟, 孙文磊, 周浩南, 等. 激光熔覆镍基合金涂层裂纹形成机理及匹配方法的研究[J]. 热加工工艺, 2022, 51(14): 83-88. Wang Wei, Sun Wenlei, Zhou Haonan, et al. Study on crack formation mechanism and matching method of laser cladding nickel-based alloy coating[J]. Hot Working Technology, 2022, 51(14): 83-88. [19]郑启池, 金亚娟, 李瑞峰, 等. 功率输入对激光熔覆镍基涂层组织和裂纹生成的影响[J]. 江苏科技大学学报(自然科学版), 2017, 31(3): 293-297. Zheng Qichi, Jin Yajuan, Li Ruifeng, et al. Effect of power input on microstructure and crack formation of Ni based coating by laser cladding[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(3): 293-297. [20]李洪玉, 魏连峰, 王泽明, 等. 预热温度对激光熔覆层组织和应力的影响[J]. 激光与光电子学进展, 2021, 58(7): 249-257. Li Hongyu, Wei Lianfeng, Wang Zeming, et al. Effect of preheating temperature on microstructure and stress of laser cladding layer[J]. Laser & Optoelectronics Progress, 2021, 58(7): 249-257. [21]Inoue A, Shen B L, Yavari A R, et al. Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si systems[J]. Journal of Materials Research, 2003, 18(6): 1487-1492. [22]Shen L Q, Luo P, Hu Y C, et al. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass[J]. Nature Communications, 2018, 9(1): 1-9. [23]Cheng Jiangbo, Liang Xiubing, Wu Yixiong, et al. Microstructure and wear behavior of FeBSiNbCr metallic glass coatings[J]. Journal of Materials Science & Technology, 2009, 25(5): 687-690. [24]Qiao Jianghao, Jin Xin, Qin Jiahao, et al. A super-hard superhydrophobic Fe-based amorphous alloy coating[J]. Surface & Coatings Technology, 2018, 334: 286-291. [25]王天聪, 朱彦彦, 姚成武, 等. 激光熔覆碳纳米管增韧铁基非晶涂层的组织与力学性能[J]. 机械工程材料, 2020, 44(5): 54-59, 65. Wang Tiancong, Zhu Yanyan, Yao Chengwu, et al. Microstructure and mechanical properties of laser cladding carbon nanotubes toughened Fe-based amorphous coating[J]. Materials for Mechanical Engineering, 2020, 44(5): 54-59, 65. [26]Luo Xixi, Yao Zhengjun, Zhang Pingze, et al. Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties[J]. Journal of Alloys and Compounds, 2018, 755: 41-54. [27]闫 洪, 窦明民, 李和平. 二氧化锆陶瓷的相变增韧机理和应用[J]. 陶瓷学报, 2000, 21(1): 46-50. Yan Hong, Dou Mingmin, Li Heping. Transformation toughening mechanisms and application of ZrO2 ceramics[J]. Journal of Ceramics, 2000, 21(1): 46-50. [28]张三川, 姚建铨. 氧化锆掺杂激光熔覆涂层成形、结构与增韧机制[J]. 激光杂志, 2007, 28(2): 73-74. Zhang Sanchuan, Yao Jianquan. Study on the forming structure and toughening mechanism of coating intermingled with ZrO2 by laser cladding[J]. Laser Journal, 2007, 28(2): 73-74. [29]张维平, 路董华, 余娟娟, 等. 氧化锆增韧机制在激光熔覆技术中的应用[J]. 中国激光, 2014, 41(11): 90-94. Zhang Weiping, Lu Donghua, Yu Juanjuan, et al. Application of Zirconia toughening mechanism on laser cladding[J]. Chinese Journal of Lasers, 2014, 41(11): 90-94. [30]邝 海, 谭敦强, 何 文, 等. 稀土元素对硬质合金影响的研究进展[J]. 稀有金属与硬质合金, 2018, 46(3): 69-74. Kuang Hai, Tan Dunqiang, He Wen, et al. Research progress on the effects of rare earth elements on cemented carbides[J]. Rare Metals and Cemented Carbides, 2018, 46(3): 69-74. [31]钟文华, 刘贵仲, 潘洁宗, 等. Y2O3对镍基碳化铬激光熔覆层结构性能的影响[J]. 材料热处理学报, 2013, 34(2): 147-151. Zhong Wenhua, Liu Guizhong, Pan Jiezong, et al. Effect of Y2O3 on structure and properties of Ni/Cr3C2 cladding layer[J]. Transactions of Materials and Heat Treatment, 2013, 34(2): 147-151. [32]王成磊, 张光耀, 高 原, 等. Y2O3在6063铝合金表面激光熔覆Ni基熔覆层中的作用机制[J]. 稀有金属, 2016, 40(3): 201-206. Wang Chenglei, Zhang Guangyao, Gao Yuan, et al. Mechanism of Y2O3 affecting laser cladding of Ni-based coating on 6063 Al alloy substrate[J]. Chinese Journal of Rare Metals, 2016, 40(3): 201-206. [33]匡建新, 汪新衡, 朱航生. La2O3对激光熔覆镍基碳化钛复合涂层组织和耐腐蚀性能的影响[J]. 热加工工艺, 2011, 40(2): 118-120. Kuang Jianxin, Wang Xinheng, Zhu Hangsheng. Effect of La2O3 on microstructure and corrosion resistance of Ni/TiC composite coating prepared by laser cladding[J]. Hot Working Technology, 2011, 40(2): 118-120. [34]王成磊, 高 原, 张光耀. CeO2对铝合金表面激光熔覆增材制造Ni60合金层组织及耐蚀性影响[J]. 稀有金属材料与工程, 2017, 46(8): 2306-2312. Wang Chenglei, Gao Yuan, Zhang Guangyao. Effect of CeO2 addition on interface structure and corrosion resistance of laser cladding additive manufactured Ni60 alloy layers on the surface of Al alloys[J]. Rare Metal Materials and Engineering, 2017, 46(8): 2306-2312. [35]陈顺高, 张晓明, 郑启池, 等. CeO2对激光熔覆Ni60合金涂层组织及性能的影响[J]. 激光技术, 2017, 41(6): 904-908. Chen Shungao, Zhang Xiaoming, Zheng Qichi, et al. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. Laser Technology, 2017, 41(6): 904-908. [36]陈传忠, 王文中, 曹怀华, 等. 激光熔覆Al2O3-NiCrAl层的脆性及摩擦磨损特性[J]. 中国激光, 1999, 26(9): 841-846. Chen Chuanzhong, Wang Wenzhong, Cao Huaihua, et al. Brittleness and tribological characteristics of Al2O3 ceramic coatings cladding by laser on W18Cr4V steel[J]. Chinese Journal of Lasers, 1999, 26(9): 841-846. [37]沈大臣, 叶 宏, 汪砚青, 等. Cr12MoV钢表面激光熔覆多层Ni基合金涂层的组织及性能[J]. 金属热处理, 2020, 45(12): 169-174. Shen Dachen, Ye Hong, Wang Yanqing, et al. Microstructure and properties of laser clad multi-layer Ni-based coating on Cr12MoV steel surface[J]. Heat Treatment of Metals, 2020, 45(12): 169-174. [38]范鹏飞, 孙文磊, 张 冠, 等. 激光熔覆铁基合金梯度涂层的组织性能及应用[J]. 材料导报, 2019, 33(22): 3806-3810. Fan Pengfei, Sun Wenlei, Zhang Guan, et al. Microstructure, properties and applications of laser cladding Fe-based alloy gradient coatings[J]. Materials Reports, 2019, 33(22): 3806-3810. [39]Wang Fujun, Mao Huaidong, Zhang Dawei, et al. The crack control during laser cladding by adding the stainless steel net in the coating[J]. Applied Surface Science, 2009, 255(21): 8846-8854. [40]Khalili Arman, Goodarzi Massoud, Mojtahedi Milad, et al. Solidification microstructure of in-situ laser-synthesized Fe-TiC hard coating[J]. Surface and Coatings Technology, 2016, 307: 747-752. [41]童文辉, 张新元, 李为轩, 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274. Tong Wenhui, Zhang Xinyuan, Li Weixuan, et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer[J]. Acta Metallurgica Sinica, 2020, 56(9): 1265-1274. [42]赵栓峰, 郭颖潇, 柴蓉霞, 等. 扫描速度对激光熔覆铁基合金的组织与性能影响研究[J]. 应用激光, 2020, 40(5): 811-820. Zhao Shuanfeng, Guo Yingxiao, Chai Rongxia, et al. Research on the effect of scanning speed on microstructure and properties of laser cladding the Fe-base alloy[J]. Applied Laser, 2020, 40(5): 811-820. [43]易湘斌, 梁泽芬, 郭小汝, 等. 扫描速度对不锈钢激光熔覆铁基合金涂层组织与性能的影响[J]. 热处理技术与装备, 2017, 38(6): 7-11. Yi Xiangbin, Liang Zefen, Guo Xiaoru, et al. Effect of scanning speed on microstructure and properties of laser cladding Fe based alloy coating on stainless steel[J]. Heat Treatment Technology and Equipment, 2017, 38(6): 7-11. [44]谭金花, 孙荣禄, 牛 伟, 等. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100. Tan Jinhua, Sun Ronglu, Niu Wei, et al. Effect of laser scanning speed on microstructure and properties of TC4 alloy surface laser cladding composite coating[J]. Materials Reports, 2020, 34(12): 12094-12100. [45]韩基泰, 武美萍, 崔 宸. 激光功率对42CrMo钢激光熔覆层组织和摩擦磨损性能的影响[J]. 金属热处理, 2020, 45(11): 214-217. Han Jitai, Wu Meiping, Cui Chen. Effect of laser power on microstructure and friction and wear properties of laser clad layer on 42CrMo steel[J]. Heat Treatment of Metals, 2020, 45(11): 214-217. [46]Fu Fuxing, Zhang Yanli, Chang Gengrong, et al. Analysis on the physical mechanism of laser cladding crack and its influence factors[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(1): 200-202. [47]于希辰, 王志文, 刘海青, 等. 后热处理对激光熔覆涂层应用的研究进展[J]. 金属热处理, 2019, 44(3): 114-119. Yu Xichen, Wang Zhiwen, Liu Haiqing, et al. Research progress of application of post heat-treatment on laser cladded coatings[J]. Heat Treatment of Metals, 2019, 44(3): 114-119. [48]李美艳, 蔡春波, 韩 彬, 等. 预热对激光熔覆陶瓷涂层温度场和应力场影响[J]. 材料热处理学报, 2015, 36(12): 197-203. Li Meiyan, Cai Chunbo, Han Bin, et al. Numerical simulation of preheating on temperature and stress fields by laser cladding Ni-based ceramic coating[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 197-203. [49]姚永强. 真空环境与基体预热对激光熔覆Ni基WC涂层性能及缺陷改善的研究[D]. 青岛: 青岛理工大学, 2019. Yao Yongqiang. Study on performance and defects improvement of laser cladding Ni-based WC coating by vacuum environment and matrix preheating[D]. Qingdao: Qingdao University of Technology, 2019. [50]吴祖鹏, 李 涛, 李向波. 复合工艺参数对激光熔覆Ni60A合金裂纹的影响[J]. 应用激光, 2019, 39(5): 765-769. Wu Zupeng, Li Tao, Li Xiangbo. Effect of hybrid process parameters on crack behavior of laser cladding Ni60A alloy[J]. Applied Laser, 2019, 39(5): 765-769. [51]Liu Xiubo, Liu Haiqing, Meng Xiangjun, et al. Effects of aging treatment on microstructure and tribological properties of nickel-based high-temperature self-lubrication wear resistant composite coatings by laser cladding[J]. Materials Chemistry and Physics, 2014, 143(2): 616-621. [52]张尧成, 黄希望, 杨 莉, 等. 热处理前后镍基高温合金激光熔覆层的组织和力学性能[J]. 机械工程材料, 2016, 40(11): 22-26, 30. Zhang Yaocheng, Huang Xiwang, Yang Li, et al. Microstructure and mechanical properties of laser cladded Ni-based superalloy coating before and after heat treatment[J]. Materials for Mechanical Engineering, 2016, 40(11): 22-26, 30. [53]Taposh Roy, Ralph Abrahams, Anna Paradowska, et al. Evaluation of the mechanical properties of laser cladded hypereutectoid steel rails[J]. Wear, 2019, 432-433(2): 202930. [54]崔 宸, 武美萍, 夏思海. 热处理对42CrMo钢表面激光熔覆钴基涂层性能的影响[J]. 中国激光, 2020, 47(6): 154-161. Cui Chen, Wu Meiping, Xia Sihai. Effect of heat treatment on properties of laser cladding cobalt-based coating on 42CrMo steel surface[J]. Chinese Journal of Lasers, 2020, 47(6): 154-161. [55]李 丽, 孙 峰, 张尧成. 固溶处理对激光熔覆Stellite6合金涂层性能的影响[J]. 表面技术, 2017, 46(1): 78-81. Li Li, Sun Feng, Zhang Yaocheng. Effect of solution treatment on the performance of laser cladding of Stellite6 alloy coating[J]. Surface Technology, 2017, 46(1): 78-81. [56]陆小龙, 刘秀波, 余鹏程, 等. 后热处理对304不锈钢激光熔覆Ni60/h-BN自润滑耐磨复合涂层组织和摩擦学性能的影响[J]. 摩擦学学报, 2016, 36(1): 48-54. Lu Xiaolong, Liu Xiubo, Yu Pengcheng, et al. Effects of post heat-treatment on microstructure and tribological properties of Ni60/H-BN self-lubricating anti-wear composite coating on 304 stainless steel by laser cladding[J]. Tribology, 2016, 36(1): 48-54. [57]邓德伟, 马云波, 马玉山, 等. 重熔及退火对316L不锈钢激光熔覆层残余应力的影响[J]. 金属热处理, 2020, 45(8): 113-118. Deng Dewei, Ma Yunbo, Ma Yushan, et al. Influence of remelting and annealing on residual stress of 316L stainless steel laser clad layer[J]. Heat Treatment of Metals, 2020, 45(8): 113-118. [58]张蕾涛, 李海涛, 贾润楠, 等. 激光重熔Ni60/50%WC复合涂层的制备及性能[J]. 金属热处理, 2021, 46(5): 229-234. Zhang Leitao, Li Haitao, Jia Runnan, et al. Preparation and properties of laser remelted Ni60/50%WC composite coating[J]. Heat Treatment of Metals, 2021, 46(5): 229-234. [59]Lu Yunzhuo, Huang Guokun, Wang Yongzhe, et al. Crack-free Fe-based amorphous coating synthesized by laser cladding[J]. Materials Letters, 2018, 210: 46-50. [60]Liu Hongxi, Xu Qian, Wang Chuanqi, et al. Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing[J]. Journal of Alloys and Compounds, 2015, 621: 357-363. [61]Foroozmehr Ehsan, Lin Dechao, Kovacevic Radovan. Application of vibration in the laser powder deposition process[J]. Journal of Manufacturing Processes, 2009, 11(1): 38-44. [62]沈言锦, 李雪丰, 唐利平. 超声功率对激光熔覆WC强化Fe基复合涂层组织与性能的影响[J]. 金属热处理, 2018, 43(5): 168-172. Shen Yanjin, Li Xuefeng, Tang Liping. Effect of ultrasonic power on microstructure and properties of laser-clad WC strengthened Fe-based composite coating[J]. Heat Treatment of Metals, 2018, 43(5): 168-172. [63]王 冉, 王玉玲, 姜芙林, 等. 超声辅助激光熔覆技术研究现状[J]. 工具技术, 2020, 54(8): 3-9. Wang Ran, Wang Yuling, Jiang Fulin, et al. Research status of ultrasonic assisted laser cladding technology[J]. Tool Engineering, 2020, 54(8): 3-9. [64]Ma G, Yan S, Wu D, et al. Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating[J]. Ceramics International, 2017, 43(13): 9622-9629. [65]李 洋. 超声振动辅助激光熔覆制备TiC/FeAl原位涂层研究[D]. 上海: 华东交通大学, 2016. Li Yang. Investigation on in-situ TiC/FeAl coating prepared with ultrasonic vibration aided laser cladding technology[D]. Shanghai: East China Jiaotong University, 2016. [66]Yan Shuai, Wu Dongjiang, Niu Fangyong, et al. Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping[J]. Ceramics International, 2017, 43(17): 15905-15910. [67]钦兰云, 王 维, 杨 光. 超声辅助钛合金激光沉积成形试验研究[J]. 中国激光, 2013, 40(1): 82-87. Qin Lanyun, Wang Wei, Yang Guang. Experimental study on ultrasonic-assisted laser metal deposition of titanium alloy[J]. Chinese Journal of Lasers, 2013, 40(1): 82-87. [68]李德英, 赵龙志, 张 坚, 等. 超声振动对激光熔覆TiC/FeAl复合涂层温度场的影响[J]. 金属热处理, 2015, 40(3): 190-194. Li Deying, Zhao Longzhi, Zhang Jian, et al. Influence of ultrasonic vibration on temperature field of TiC/FeAl composite coating in laser cladding[J]. Heat Treatment of Metals, 2015, 40(3): 190-194. [69]Zhang Nan, Liu Weiwei, Deng Dewei, et al. Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J]. Optics and Laser Technology, 2018, 108: 247-254. [70]Zhu Kuisong, Ma Wenhui, Wei Kuixian, et al. Separation mechanism of TiSi2 crystals from a Ti-Si eutectic alloy via directional solidification[J]. Journal of Alloys & Compounds, 2018, 750: 102-110. [71]Chen Jicheng, Wei Yanhong, Zhan Xiaohong, et al. Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. Journal of Materials Processing Technology, 2018, 254: 325-337. [72]Velde O, Gritzki R, Grundmann R. Numerical investigations of Lorentz force influenced Marangoni convection relevant to aluminum surface alloying[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2751-2762. [73]余本海, 胡雪惠, 吴玉娥, 等. 电磁搅拌对激光熔覆WC-Co基合金涂层的组织结构和硬度的影响及机理研究[J]. 中国激光, 2010, 37(10): 2672-2677. Yu Benhai, Hu Xuehui, Wu Yue, et al. Studies of the effects and mechanism of electromagnetic stirring on the microstructures and hardness of laser cladding WC-Co based alloy coating[J]. Chinese Journal of Lasers, 2010, 37(10): 2672-2677. [74]林英华, 袁 莹, 王 梁, 等. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450. Lin Yinghua, Yuan Ying, Wang Liang, et al. Effect of electric-magnetic compound field on the microstructure and crack in solidified Ni60 alloy[J]. Acta Metallurgica Sinica, 2018, 54(10): 1442-1450. [75]胡 勇, 王 梁, 李珏辉, 等. 定向洛伦兹力对激光熔覆熔池排气的影响[J]. 中国激光, 2018, 45(8): 56-65. Hu Yong, Wang Liang, Li Juehui, et al. Effect of directional Lorentz force on molten pool exhaust in laser cladding[J]. Chinese Journal of Lasers, 2018, 45(8): 56-65. [76]曹 阳, 姚宏凯, 吴国庆, 等. 磁场辅助激光熔覆5CrNiMo/Ni60涂层组织微结构及性能研究[J]. 南通大学学报, 2020, 19(4): 57-62. Cao Yang, Yao Hongkai, Wu Guoqing, et al. Study on microstructure and properties of magnetic field assisted laser cladding 5CrNiMo/Ni60 coating[J]. Journal of Nantong University, 2020, 19(4): 57-62. [77]蔡川雄, 刘洪喜, 蒋业华, 等. 交变磁场对激光熔覆Fe基复合涂层组织结构及其耐磨性的影响[J]. 摩擦学学报, 2013, 33(3): 229-235. Cai Chuanxiong, Liu Hongxi, Jiang Yehua, et al. Influence of AC magnetic field on microstructure and wear behaviors of laser cladding Fe-based composite coating[J]. Tribology, 2013, 33(3): 229-235. [78]Bachmann M, Avilov V, Gumenyuk A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24-34. [79]杨 光, 薛 雄, 钦兰云, 等. 旋转磁场对激光熔凝钛合金熔池的影响[J]. 稀有金属材料与工程, 2016, 45(7): 1804-1810. Yang Guang, Xue Xiong, Qin Lanyun, et al. Influence of a rotating magnetic field on laser melting titanium alloy melt pool[J]. Rare Metal Materials and Engineering, 2016, 45(7): 1804-1810. [80]徐家乐. 电磁超声复合能场辅助激光熔覆钴基合金涂层组织及性能研究[D]. 镇江: 江苏大学, 2019. Xu Jiale. Study on microstructure and properties of Co-based coatings by laser cladding coupled with electromagnetic/ultrasonic compound energy field[D]. Zhenjiang: Jiangsu University, 2019. |