[1]Yazdanmehr A, Roostaei A A, Jahed H. Modelling residual stresses in shot-peened magnesium alloys: A hybrid method[J]. Metals and Materials International, 2022, 28: 2395-2412. [2]Aguado-Montero S, Vázquez J, Navarro C, et al. Optimal shot peening residual stress profile for fatigue[J]. Theoretical and Applied Fracture Mechanics, 2021, 116: 103109. [3]Chen M, Xing S, Li J, et al. Surface residual stress and microstructure evolutions of Hastelloy X alloy after severe shotpeening[J]. Vacuum, 2021, 187: 110136. [4]Ren X, Wang Z. The mechanism of stress interaction induced by successive impacts in shot peening and wet peeningzone[J]. International Journal of Mechanical Sciences, 2021, 211: 106757. [5]徐戊矫, 刘承尚, 鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算与预测研究[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287. Xu Wujiao, Liu Chengshang, Lu Xinyao. Simulation and prediction of surface roughness of 6061 aluminum alloy workpiece after shot peening[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1280-1287. [6]Hong T, Ooi J Y, Shaw B. A numerical simulation to relate the shot peening parameters to the induced residual stresses[J]. Engineering Failure Analysis, 2008, 15(8):1097-1110. [7]Liu Y G, Li M Q, Liu H J. Nanostructure and surface roughness in the processed surface layer of Ti-6Al-4V via shotpeening[J]. Materials Characterization, 2017, 123: 83-90. [8]Unal O, Varol R. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening[J]. Applied Surface Science, 2015, 351: 289-295. [9]Bagherifaed S, Ghelichi R, Guagliano M. Numerical and experimental analysis of surface roughness generated by shot peening[J]. Applied Surface Science, 2012, 258(18): 6831-6840. [10]Li S, Liang W, Yan H, et al. Prediction of fatigue crack propagation behavior of AA2524 after laser shot peening[J]. Engineering Fracture Mechanics, 2022, 268: 108477. [11]Wang Y, Zhang Y, Song G, et al. Effect of shot peening on fatigue crack propagation of Ti6Al4V[J]. Materials Today Communications, 2020, 25: 101430. [12]刘曹文, 廖 凯, 陈家伟, 等. 喷丸对7075-T651铝合金表面粗糙度影响的仿真与试验研究[J].材料热处理学报, 2021, 42(6): 172-180. Liu Caowen, Liao Kai, Chen Jiawei, et al. Simulation and experimental research on effect of shot peening on surface roughness of 7075-T651 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2021, 42(6):172-180. [13]盛湘飞, 李 智, 赵科宇, 等. 相同喷丸强度条件下喷丸强化效果的数值模拟研究[J]. 表面技术, 2018, 47(9): 42-48. Sheng Xiangfei, Li Zhi, Zhao Keyu, et al. Numerical simulation research on strengthening effect of shot peening at identical intensity[J]. Surface Technology, 2018, 47(9): 42-48. [14]Lin Q, Wei P, Liu H, et al. A CFD-FEM numerical study on shot peening[J]. International Journal of Mechanical Sciences, 2022, 223: 107259. [15]邓明明, 彭归浠, 郑 明, 等. 基于FEM-DEM的粗糙表面喷丸数值模拟与试验研究[J]. 机械传动, 2021, 45(7): 156-160. Deng Mingming, Peng Guixi, Zheng Ming, et al. Numerical simulation and experimental study of shot peening on rough surface based on FEM-DEM[J]. Journal of Mechanical Transmission, 2021, 45(7):156-160. [16]Tu F, Delbergue D, Miao H, et al. A sequential DEM-FEM coupling method for shot peening simulation[J]. Surface and Coatings Technology, 2017, 319: 200-212. [17]Murugaratnam K, Utili S, Petrinic N. A combined DEM-FEM numerical method for Shot Peening parameter optimisation[J]. Advances in Engineering Software, 2015, 79: 13-26. [18]Dya T, Blaise B B, Betchewe G, et al. Characterization of pure torsion of a rubber-like cylinder using a hyperelastic model[J]. The European Physical Journal Plus, 2022, 137(5): 1-8. [19]张 良, 李忠华, 马新强. 橡胶Mooney-Rivlin超弹性本构模型的参数特性研究[J]. 噪声与振动控制, 2018, 38(S2): 427-430. Zhang Liang, Li Zhonghua, Ma Xinqiang. Study on parameter characteristics of rubber Mooney-Rivlin model [J]. Noise and Vibration Control, 2018, 38(S2): 427-430. [20]郭子涛, 高 斌, 郭 钊, 等. 基于J-C模型的Q235钢的动态本构关系[J]. 爆炸与冲击, 2018, 38(4): 804-810. Guo Zitao, Gao Bin, Guo Zhao, et al. Dynamic constitutive relation based on J-C model of Q235 steel[J]. Explosion and Shock Waves, 2018, 38(4): 804-810. |