[1]陈明义. 培育壮大我国的海洋工程装备制造业[J]. 发展研究, 2011(5): 4-6. [2]范长刚, 董 瀚, 雍岐龙, 等. 低合金超高强度钢的研究进展[J]. 机械工程材料, 2006, 30(8): 1-4. Fan Changgang, Dong Han, Yong Qilong, et al. Research development of ultra-high strength low alloy steels[J]. Materials for Mechanical Engineering, 2006, 30(8): 1-4. [3]王涛亮, 路 妍, 任凤章, 等. 低合金超高强度钢研究进展[J]. 金属热处理, 2015, 40(2): 13-20. Wang Taoliang, Lu Yan, Ren Fengzhang, et al. Research progress of ultra-high strength low alloy steels[J]. Heat Treatment of Metals, 2015, 40(2): 13-20. [4]杨 静. 低合金高碳钢低温等温淬火组织和力学性能的研究[D]. 秦皇岛: 燕山大学, 2008. Yang Jing. Study on microstructures and mechanical properties of low-alloyed high-carbon steels by low-temperature isothermal treatment[D]. Qinghuangdao: Yanshan University, 2008. [5]吴 化, 张翠翠, 梁 言, 等. 低合金超级贝氏体钢组织形态的研究[J]. 材料科学与工艺, 2014, 22(5): 102-107. Wu Hua, Zhang Cuicui, Liang Yan, et al. Study on microstructure of the low-alloying super bainitic steel[J]. Materials Science and Technology, 2014, 22(5): 102-107. [6]董宝奇. 低温贝氏体钢的力学性能及其强磁场下的相变[D]. 武汉: 武汉科技大学, 2019. Dong Baoqi. Mechanical properties of low-temperature bainitic steel and phase transformation under high magnetic field[D]. Wuhan: Wuhan University of Science and Technology, 2019. [7]吴亚杰. 热处理工艺对中高碳低温贝氏体钢组织和性能的影响[D]. 武汉: 武汉科技大学, 2019. Wu Yajie. Effect of heat treatment processes on microstructure and properties of medium and high carbon low temperature bainitic steels[D]. Wuhan: Wuhan University of Science and Technology, 2019. [8]马胜宾, 滕敦波, 王俊翔. 热处理工艺对高C-Cr高强耐磨钢组织和性能的影响[J]. 中国冶金, 2021, 31(6): 39-44. Ma Shengbin, Teng Dunbo, Wang Junxiang. Influence of heat treatment on microstructure and properties of high C-Cr high strength wear-resistant steel[J]. China Metallurgy, 2021, 31(6): 39-44. [9]Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica 1959, 7: 59-60. [10]Bohemen S M C V, Santofimia M J, Sietsma J. Experimental evidence for bainite formation below Ms in Fe-0.66C[J]. Scripta Materialia, 2008, 58(6): 488-491. [11]Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel[J]. Acta Materialia, 2015, 85: 243-249. [12]殷汉奇, 许红军. 硝盐淬火技术[J]. 热处理, 2015, 30(3): 36-44. Yin Hanqi, Xu Hongjun. Quenching in molten nitrate-nitrite salt[J]. Heat Treatment, 2015, 30(3): 36-44. [13]张 峦, 顾 敏, 王爱香, 等. 硝盐淬火介质的冷却特性[J]. 金属热处理, 2015, 40(6): 212-215. Zhang Luan, Gu Min, Wang Aixiang, et al. Cooling characteristics of nitrate quenching medium[J]. Heat Treatment of Metals, 2015, 40(6): 212-215. [14]Samanta S, Biswas P, Giri S, et al. Formation of bainite below the Ms temperature: Kinetics and crystallography[J]. Acta Materialia, 2016, 105: 390-403. [15]Navarro-Lopez A, Hidalgo J, Sietsma J, et al. Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature[J]. Materials Characterization, 2017, 128: 248-256. [16]Zhao L, Qian L, Zhou Q, et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel[J]. Materials and Design, 2019, 183: 108123. [17]Zhao L, Qian L, Meng J, et al. Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels[J]. Scripta Materialia, 2016, 112: 96-100. [18]Samanta S, Biswas P, Singh S B. Analysis of the kinetics of bainite formation below the Ms temperature[J]. Scripta Materialia, 2017, 136: 132-135. [19]刘宗昌, 计云萍. 马氏体组织形貌形成机理[J]. 热处理技术与装备, 2019, 40(4): 1-7. Liu Zongchang, Ji Yunping. Formation mechanism of martensite morphology[J]. Heat Treatment Technology and Equipment, 2019, 40(4): 1-7. [20]黄维刚, 方鸿生, 郑燕康. 硅对Mn-B系空冷贝氏体钢组织与性能的影响[J]. 材料热处理学报, 1997, 18(1): 10-15. Huang Weigang, Fang Hongsheng, Zheng Yankang. Effect of silicon on microstructure and properties of Mn-B modified bainite steel[J]. Transactions of Materials and Heat Treatment, 1997, 18(1): 10-15. [21]黄维刚, 徐 蓉, 方鸿生, 等. 中低碳含硅空冷贝氏体钢的冲击韧性[J]. 钢铁研究学报, 1997, 9(2): 35-38. Huang Weigang, Xu Rong, Fang Hongsheng, et al. Impact toughness of medium-low carbon silicon modified bainitic steel[J]. Journal of Iron and Steel Research, 1997, 9(2): 35-38. [22]徐祖耀. 马氏体相变与马氏体[M]. 2版. 北京: 科学出版社, 1999: 556-565. [23]Miihkinen V T T, Edmonds D V. Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon[J]. Materials Science and Technology, 1987, 3(6): 441-449. [24]Miihkinen V T T, Edmonds D V. Tensile deformation of two experimental high-strength bainitic low-alloy steels containing silicon[J]. Materials Science and Technology, 1987, 3(6): 432-440. [25]Miihkinen V T T, Edmonds D V. Microstructural examination of two experimental high-strength bainitic low-alloy steels containing silicon[J]. Materials Science and Technology, 1987, 3(6): 422-431. [26]吴彬彬. 高强度低合金钢晶体学特征及其成分-工艺-性能关系研究[D]. 北京: 北京科技大学, 2020. Wu Binbin. Study on crystallographic characteristics of high strengh low alloy steel and its composition-process-performance relationship[D]. Beijing: University of Science and Technology Beijing, 2020. [27]Lei X, Huang J, Chen S, et al. Expanded lever rule for phase volume fraction calculation of high-strength low-alloy steel in thermal simulation[J]. Metallurgical and Materials Transactions A, 2016, 47(6): 2795-2803. [28]徐祖耀. 低碳钢中的残余奥氏体[J]. 上海金属, 1995, 17(1): 1-6. Xu Zuyao. Retained austenite in low carbon steels[J]. Shanghai Metals, 1995, 17(1): 1-6. [29]Zhang X M, Li D F, Xing Z S. Morphology transition of deformation-induced lenticular martensite in Fe-Ni-C alloys[J]. Acta Metallurgica et Materials, 1993, 41(1): 1693-1699. [30]任勇强, 谢振家, 尚成嘉. 低碳钢中残留奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080. Ren Yongqiang, Xie Zhenjia, Shang Chengjia. Regulation of retained austenite and its effect on the mechanical properties of low carbon steel[J]. Acta Metallurgica Sinica, 2012, 48(9): 1074-1080. [31]周 涛. 马氏体基高强钢强韧化机理研究与物理建模[D]. 北京: 北京科技大学, 2018. Zhou Tao. Study of strengthening and toughening, and physically based modelling of martensite-based high-strength steels[D]. Beijing: University of Science and Technology Beijing, 2018. |