[1]Shangina D V, Bochvar N R, Morozova A I, et al. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion[J]. Materials Letters, 2017, 199: 46-49. [2]Zhang S J, Li R G, Kang H J, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment[J]. Materials Science and Engineering A, 2016, 680: 108-114. [3]Islamgaliev R K, Nesterov K M, Bourgon J, et al. Nanostructured Cu-Cr alloy with high strength and electrical conductivity[J]. Journal of Applied Physics, 2014, 115(19): 194301. [4]Fu H D, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2017, 700: 107-115. [5]丰振军, 杜忠泽, 王庆娟. 高强高导 Cu-Cr-Zr系合金的研究进展[J]. 热加工工艺, 2008, 37(8): 86-89. Feng Zhenjun, Du Zhongze, Wang Qingjuan. Research progress of high-strength and high-conductivity Cu-Cr-Zr system alloy[J]. Hot Working Technology, 2008, 37(8): 86-89. [6]占国星, 李明茂. 高强高导Cu-Cr-Zr系合金的研究与应用进展[J]. 有色金属科学与工程, 2012, 3(1): 13-17. Zhan Guoxing, Li Mingmao. Research and application progress of high-strength and high-conductivity Cu-Cr-Zr alloys[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 13-17. [7]Chbihi A, Sauvage X, Blavette D. Atomic scale investigation of Cr precipitation in copper[J]. Acta Materialia, 2012, 60(11): 4575-4585. [8]Jin Y, Adachi K, Takeuchi T, et al. Correlation between the electrical conductivity and aging treatment for a Cu-15wt%Cr alloy composite formed in-situ[J]. Materials Letters, 2005, 32(2): 371-374. [9]Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71wt%Cr alloy[J]. Journal of Alloys and Compounds, 2017, 708: 1096-1102. [10]Hatakeyama M, Toyama T, Nagai Y, et al. Nanostructuralevolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe[J]. Materials Transactions, 2008, 49(3): 518-521. [11]Zhang P C, Jie J C, Gao Y, et al. Influence of cold deformation and Ti element on the microstructure and properties of Cu-Cr system alloys[J]. Journal of Materials Research, 2015, 30(13): 2073-2080. [12]Xu S, Fu H D, Wang Y G, et al. Effect of Ag addition on the microstructure and mechanical properties of Cu-Cr alloy[J]. Materials Science and Engineering A, 2018, 726: 208-214. [13]Zeng H, Sui H, Wu S J, et al. Evolution of the microstructure and properties of a Cu-Cr-(Mg)alloy upon thermomechanical treatment[J]. Journal of Alloys and Compounds, 2020, 857: 157582. [14]Ma M Z, Xiao Z, Meng X P, et al. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys[J]. Journal of Materials Science and Technology, 2022, 112(17): 11-23. [15]罗泽宇. Cu-Cr-Sn合金成分、工艺、组织与性能之间构效关系研究[D]. 赣州: 江西理工大学, 2019. Luo Zeyu. Study on structure-activity relationship among composition, process, microstructure and properties of Cu-Cr-Sn alloy[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. [16]Wang X Y, Xie W B, Chen H M, et al. First-principles study of phase transformations in Cu-Cr alloys[J]. Journal of Alloys and Compounds, 2021, 862: 158531. [17]Ardell A J. Precipitation hardening[J]. Metallurgical Transactions A, 1942, 16(12): 2131-2165. [18]Fujii T, Nakazawa H, Kato M, et al. Crystallography and morphology of nanosized Cr particles in a Cu-0.2%Cr alloy[J]. Acta Materialia, 2000, 48(5): 1033-1045. |