[1]Wu Baoye, Liu Peng, Wang Xizhao, et al. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide[J]. Optics Laser Technology, 2018, 101: 11-20. [2]Feng Xingguo, Zhang Yanshuai, Hu Hanjun, et al. Comparison of mechanical behavior of TiN, TiNC, CrN/TiNC, TiN/TiNC films on G95Cr18 steel by PVD[J]. Applied Surface Science, 2017, 422(15): 266-272. [3]Aisha M, Mohammed A H A, Ibrahim H S, et al. Analysis of a 440C steel roller bearing using finite element method[J]. Materials Today: Proceedings, 2021, 44: 1750-1754. [4]Pan L, Kwok C T, LoK T. Friction-stir processing of AISI 440C high-carbon martensitic stainless steel for improving hardness and corrosion resistance[J]. Journal of Materials Processing Technology, 2020, 277: 116448. [5]王 坤, 胡 锋, 周 雯, 等. 轴承钢研究现状及发展趋势[J]. 中国冶金, 2020, 30(9): 119-128. Wang Kun, Hu Feng, Zhou Wen, et al. Research status and development trend of bearing steel[J]. China Metallurgy, 2020, 30(9): 119-128. [6]李慧东, 张覃轶, 刘 伟, 等. 深冷处理对440C马氏体不锈钢组织和耐蚀性的影响[J]. 金属热处理, 2022, 47(8): 152-157. Li Huidong, Zhang Qinyi, Liu Wei, et al. Effect of deep cryogenic treatment on microstructure and corrosion resistance of 440C martensitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(8): 152-157. [7]安 敏, 付中元, 袁 超, 等. 淬火后清洗和冷处理工艺对9Cr18钢轴承套圈残留奥氏体含量的影响[J]. 金属热处理, 2021, 46(6): 21-24. An Min, Fu Zhongyuan, Yuan Chao, et al. Effects of post-quenching cleaning and cold treatment process on retained austenite content of 9Cr18 steel bearing ring[J]. Heat Treatment of Metals, 2021, 46(6): 21-24. [8]李炯辉. 金属材料金相图谱: 上册[M]. 北京: 机械工业出版社, 2006. [9]李付伟. 高压气淬后G95Cr18钢的组织和性能[J]. 热处理技术与装备, 2018, 39(2): 41-43. Li Fuwei. Microstructure and properties of 9Cr18 steel after high pressure gas quenching[J]. Heat Treatment Technology and Equipment, 2018, 39(2): 41-43. [10]Zhang Jiazhi, Dai Zongbiao, Zeng Liyang, et al. Revealing carbide precipitation effects and their mechanisms during quenching-partitioning-tempering of a high carbon steel: Experiments and modeling[J]. Acta Materialia, 2021, 217: 117176. [11]司志旺, 符寒光. 合金钢淬火-配分工艺研究进展[J]. 钢铁, 2022, 57(6): 120-131. Si Zhiwang, Fu Hanguang. Research progress of quenching and partitioning process for alloy steel[J]. Iron and Steel, 2022, 57(6): 120-131. [12]Ghosh S, Rakha K, Reza S, et al. Atomic scale characterization of carbon partitioning and transition carbide precipitation in a medium carbon steel during quenching and partitioning process[J]. Materials Today: Proceedings, 2022, 62: 7570-7573. [13]Shi Lei, Cui Xiufang, Li Jian, et al. Role of multiple mid-temperature tempering on mechanical properties and wear behavior of carburized steel under complex service conditions[J]. Surface and Coatings Technology, 2022, 49: 128932. [14]匡成阳, 马煜林, 王辰昱, 等. 回火温度对耐热钢组织和性能的影响[J]. 金属热处理, 2022, 47(7): 129-133. Kuang Chengyang, Ma Yulin, Wang Chenyu, et al. Effect of tempering temperature on microstructure and properties of heat-resistant steel[J]. Heat Treatment of Metals, 2022, 47(7): 129-133. [15]周丽娜. 淬火-碳分配-回火对M50钢微观组织及性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. Zhou Lina. Effect of quenching-partitioning-tempering process on microstructure and properties of M50 steel[D]. Harbin: Harbin Institute of Technology, 2019. [16]李红涛, 叶健熠, 曾献智, 等. G95Cr18钢不同回火温度下的冲击韧度与断口形貌[J]. 轴承, 2014, 12: 28-30. Li Hongtao, Ye Jianyi, Zeng Xianzhi, et al. Impact toughness and fracture morphology of G95Cr18 tempered at different temperatures[J]. Bearing, 2014, 12: 28-30. |