[1]王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698. [2]任永明, 林 鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程, 2017, 46(10): 3160-3168. Ren Yongming, Lin Xin, Huang Weidong. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3160-3168. [3]Yadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities[J]. International Journal of Fatigue, 2017, 98: 14-31. [4]闫泰起, 唐鹏均, 陈冰清, 等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报, 2020, 56(8): 37-45. Yan Taiqi, Tang Pengjun, Chen Bingqing, et al. Effect of annealing temperature on microstructure and tensile properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(8): 37-45. [5]Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: Processing, microstructure, and properties[J]. Powder Technology, 2017, 319: 117-128. [6]肖志瑜, 唐 浩, 席晓莹, 等. 激光选区熔化成形铝合金及其复合材料的研究现状与展望[J]. 粉末冶金工业, 2022, 32(2): 1-12. Xiao Zhiyu, Tang Hao, Xi Xiaoying, et al. Research status and prospects of selective laser melting forming of aluminum alloy and composites[J]. Powder Metallurgy Industry, 2022, 32(2): 1-12. [7]王 勇, 周雪峰. 激光增材制造研究前沿与发展趋势[J]. 激光技术, 2021, 45(4): 475-484. Wang Yong, Zhou Xuefeng. Research front and trend of specific laser additive manufacturing techniques[J]. Laser Technology, 2021, 45(4): 475-484. [8]赵 鑫, 虞雨洭, 吴圣川, 等. 新型飞机用铝合金薄壁件的激光选区熔化成形研究[J]. 电焊机, 2021, 51(3): 1-7. Zhao Xin, Yu Yukuang, Wu Shengchuan, et al. Selective laser melted aluminum alloy thin-walled parts of new generation aircraft structures[J]. Electric Welding Machine, 2021, 51(3): 1-7. [9]Liu Y, Liu C, Liu W S, et al. Optimization of parameters in laser deposition AlSi10Mg alloy using Taguchi method[J]. Optics and Laser Techology, 2019, 111: 470-480. [10]Romanova V, Balokhonov R, Zinovieva O, et al. Micromechanical simulations of additively manufactured aluminum[J]. Computers and Structures, 2021, 244: 106412. [11]顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 1-22. Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 1-22. [12]Dai D H, Gu D D, Poprawe R, et al. Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminum-based material[J]. Science Bulletin, 2017, 62: 779-787. [13]赵晓明, 齐元昊, 于全成, 等. AlSi10Mg铝合金3D打印组织与性能研究[J]. 铸造技术, 2016, 37(11): 2402-2404. Zhao Xiaoming, Qi Yuanhao, Yu Quancheng, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing[J]. Foundry Technology, 2016, 37(11): 2402-2404. [14]Bhaduri D, Ghara T, Penchev P, et al. Pulsed laser polishing of selective laser melted aluminium alloy parts[J]. Applied Surface Science, 2021, 558: 149887. [15]邹田春, 祝 贺, 陈敏英, 等. 激光选区熔化成形铝合金的缺陷及控制方法研究进展[J]. 热加工工艺, 2022, 51(1): 1-11. Zou Tianchun, Zhu He, Chen Minying, et al. Research progress on defects and control methods of selected laser melting aluminum alloy[J]. Hot Working Technology, 2022, 51(1): 1-11. [16]朱小刚, 孙 靖, 王联凤, 等. 激光选区熔化成形铝合金的组织、性能与倾斜面成形质量[J]. 机械工程材料, 2017, 41(2): 77-80. Zhu Xiaogang, Sun Jing, Wang Lianfeng, et al. Microstructure, properties and inclined plane forming quality of aluminum alloy by selective laser melting[J]. Materials for Mechanical Engineering, 2017, 41(2): 77-80. [17]贾朝港, 耿遥祥, 吕洪伟, 等. Er改性铝合金的选区激光熔化成形性及力学性能[J]. 中国有色金属学报, 2022, 32(12): 3578-3588. Jia Chaogang, Geng Yaoxiang, Lü Hongwei, et al. Processability and mechanical properties of Er-modified aluminum alloy fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3578-3588. [18]Awd M, Siddique S, Walther W. Microstructural damage and fracture mechanisms of selective laser melted Al-Si alloy under fatigue loading[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102483. [19]Zhao J H, Luo L S, Xue X, et al. The evolution and characterization of Al3(ScxZr1-x) phase in Al-Mg-based alloys proceeded by SLM[J]. Materials Science and Engineering A, 2021, 824: 141863. [20]Zou T C, Mei S Y, Chen M Y, et al. Precipitation behavior, microstructure and mechanical properties of Al-4.8Mg-0.82Sc-0.28Zr alloy fabricated by selective laser melting[J]. Materials Science and Engineering A, 2022, 840: 142949. [21]唐鹏钧, 何晓磊, 杨 斌, 等. 激光选区熔化用AlSi10Mg粉末显微组织与性能[J]. 航空材料学报, 2018, 38(1): 47-53. Tang Pengjun, He Xiaolei, Yang Bin, et al. Microstructure and properties of AlSi10Mg powder for selective laser melting[J]. Journal of Aeronautical Materials, 2018, 38(1): 47-53. [22]刘焕文, 郑 超, 陈素明. 时效对激光选区熔化AlSi10Mg合金力学性能与组织的影响[J]. 特种铸造及有色金属, 2020, 40(5): 523-525. Liu Huanwen, Zheng Chao, Chen Suming. Effects of heat treatment on microstructure and mechanical properties of laser selective melting AlSi10Mg alloy[J]. Special Casting and Nonferrous Alloys, 2020, 40(5): 523-525. [23]鞠成伟, 胡振光, 张修海, 等. 微量锆元素对激光选区熔化成形AlSi10Mg 合金组织及性能的影响[J]. 机械工程材料, 2022, 46(1): 19-25. Ju Chengwei, Hu Zhenguang, Zhang Xiuhai, et al. Effect of trace Zr on microstructure and properties of AlSi10Mg alloy formed by selective laser melting[J]. Materials for Mechanical Engineering, 2022, 46(1): 19-25. [24]Butler C, Babu S, Lundy R, et al. Effects of processing parameters and heat treatment on thermal conductivity of additively manufactured AlSi10Mg by selective laser melting[J]. Materials Characterization, 2021, 173: 1-14. [25]Awd M, Siddique S, Johannsen J, et al. Very high-cycle fatigue properties and microstructural damage and mechanisms of selective laser melted AlSi10Mg alloy[J]. International Journal of Fatigue, 2019, 124: 55-69. [26]Xue G, Ke L D, Liao H D, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties[J]. Materials Science and Engineering A, 2019, 764: 138155. [27]Tradowsky U, White J, Ward R M, et al. Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development[J]. Materials and Design, 2016, 105: 212-222. [28]Schuch M, Hahn T, Bleckmann M. The mechanical behavior and microstructure of additively manufactured AlSi10Mg for different material states and loading conditions[J]. Materials Science and Engineering A, 2021, 813: 141134. [29]Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting(SLM)[J]. Materials Characterization, 2017, 131: 188-194. [30]Xin S Z, Zhang L L, Chen M, et al. Understanding influence of micro pores on strengths of LMDed AlSi10Mg material using a direct method based statistical multiscale framework[J]. Materials and Design, 2022, 214: 110409. [31]Tang M, Pistorius P C. Fatigue life prediction for AlSi10Mg components produced by selective laser melting[J]. International Journal of Fatigue, 2019, 125: 479-490. [32]唐光东, 冯 涛, 段国庆, 等. AlSi7Mg合金选区激光熔化工艺及性能研究[J]. 铸造技术, 2020, 41(3): 219-222. Tang Guangdong, Feng Tao, Duan Guoqing, et al. Process and properties of AlSi7Mg alloy fabricated by laser selected melting[J]. Foundry Technology, 2020, 41(3): 219-222. [33]Pereira J C, Gil E, Solaberrieta L, et al. Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: microstructure and mechanical properties in as-built/as-cast and heat-treated conditions[J]. Materials Science and Engineering A, 2020, 778: 139124. [34]Guo Y W, Wei W, Shi W, et al. Selective laser melting of Er modified AlSi7Mg alloy: Effect of processing parameters on forming quality, microstructure and mechanical properties[J]. Materials Science and Engineering A, 2022, 842: 143085. [35]Bonneric M, Brugger C, Saintier N. Effect of hot isostatic pressing on the critical defect size distribution in AlSi7Mg0.6 alloy obtained by selective laser melting[J]. Internation Journal of Fatigue, 2020, 140: 105797. [36]刘 婷, 葛建彪. 激光增材制造高强AlSi7Mg铝合金构件工艺与组织调控研究[J]. 应用激光, 2018, 38(3): 393-401. Liu Ting, Ge Jianbiao. Tailoring of process and microstructure of high-strength AlSi7Mg aluminum alloy parts prepared by laser additive manufacturing[J]. Applied Laser, 2018, 38(3): 393-401. [37]吴圣川, 胡雅楠, 杨 冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22): 3-34. Wu Shengchuan, Hu Yanan, Yang Bing, et al. Review on defect characterization and structural integrity assessment method of additively manufactured materials[J]. Journal of Mechanical Engineering, 2021, 57(22): 3-34. [38]Hastie J C, Kartal M E, Carter L N, et al. Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: Influence of processing parameters and heat treatment[J]. Materials Characterization, 2020, 163: 110225. [39]Talemi R. A numerical study on effects of randomly distributed subsurface hydrogen pore on fretting fatigue behavior of aluminium AlSi10Mg[J]. Tribology Inernational, 2020, 142: 105997. [40]Fiocchi J, Tuissi A, Biffi C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review[J]. Materials and Design, 2021, 204: 109651. [41]Macías J G S, Douillard T, Zhao L, et al. Influence on microstructrure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg[J]. Acta Materials, 2020, 201: 231-243. [42]李晓丹, 朱庆丰, 孔淑萍, 等. 3D打印AlSi10Mg合金组织性能研究[J]. 材料科学与工艺, 2019, 27(2): 16-21. Li Xiaodan, Zhu Qingfeng, Kong Shuping, et al. Study on the structure and properties of the AlSi10Mg samples produced by 3D printing[J]. Materials Science and Technology, 2019, 27(2): 16-21. [43]Bhaduri D, Penchev P, Dimov S, et al. On the surface integrity of additive manufactured and posted AlSi10Mg parts[J]. Procedia CIRP, 2020, 87: 339-344. [44]Laursen C M, Dejong S A, Dickens S M, et al. Relationship between ductility and the porosity of additively manufactured AlSi10Mg[J]. Materials Science and Engineering A, 2020, 795: 139922. [45]张士林, 任颂赞. 简明铝合金手册[M]. 上海: 上海科学技术文献出版社, 2012: 8. [46]闫成鑫, 张惠帝, 于宝义, 等. SLM成形和时效对AlSi10Mg合金组织与性能的影响[J]. 特种铸造及有色金属, 2020, 40(2): 160-164. Yan Chengxin, Zhang Huidi, Yu Baoyi, et al. Effects of selective laser melting and heat treatment on microstructures and properties of AlSi10Mg alloys[J]. Special Casting and Nonferrous Alloys, 2020, 40(2): 160-164. [47]Takata N, Liu M, Kodaira H, et al. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al-Si-based alloys[J]. Additive Manufacturing, 2020, 33: 101152. |