[1]刘 燕, 王毛球, 刘国权. 回火温度对40CrNi3MoV钢组织和力学性能的影响[J]. 金属热处理, 2014, 39(6): 41-45. Liu Yan, Wang Maoqiu, Liu Guoquan. Effect of tempering temperature on microstructure and mechanical properties of 40CrNi3MoV steel[J]. Heat Treatment of Metals, 2014, 39(6): 41-45. [2]王毛球, 董 瀚, 王 琪, 等. 高强度炮钢的组织和力学性能[J]. 兵器材料科学与工程, 2003, 26(2): 7-10. Wang Maoqiu, Dong Han, Wang Qi, et al. Microstructure and mechanical properties of high strength gun steel[J]. Ordnance Materials Science and Engineering, 2003, 26(2): 7-10. [3]梁恩溥, 徐 乐, 杨 勇, 等. 添加Al、Cu对40CrNi3MoV钢组织和力学性能的影响[J]. 金属热处理, 2022, 47(4): 17-23. Liang Enpu, Xu Le, Yang Yong, et al. Effect of addition of Al and Cu on microstructure and mechanical properties of 40CrNi3MoV steel[J]. Heat Treatment of Metals, 2022, 47(4): 17-23. [4]董 瀚, 廉心桐, 胡春东, 等. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582. Dong Han, Lian Xintong, Hu Chundong, et al. High performance steels: The scenario of theory and technology[J]. Acta Metallurgica Sinica, 2020, 56(4): 558-582. [5]阚立烨, 叶其斌, 田 勇, 等. Cu-NiAl纳米复合析出强化钢回火工艺[J]. 钢铁, 2021, 56(2): 105-109. Kan Liye, Ye Qibin, Tian Yong, et al. Tempering process of Cu-NiAl nanocomposite precipitation strengthened steel[J]. Iron and Steel, 2021, 56(2): 105-109. [6]罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512. Luo Haiwen, Shen Guohui. Research progress and prospect of ultra high strength and high toughness steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 494-512. [7]Xu S S, Li J P, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel[J]. International Journal of Plasticity, 2020, 128: 102677. [8]王晓姣. Fe-Cu-Ni-Al-Mn钢中强化相复合析出机制的研究[D]. 上海: 上海大学, 2016. Wang Xiaojiao. Mechanism research of nanaoscale composite precipitates in Fe-Cu-Ni-Al-Mn steel[D]. Shanghai: Shanghai University, 2016. [9]焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展[J]. 中国材料进展, 2011, 30(12): 6-11. Jiao Zengbao, Liu Jinchuan. Research and development of advanced nano-precipitate strengthened ultra-high strength steels[J]. Materials China, 2011, 30(12): 6-11. [10]Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel[J]. Acta Materialia, 2014, 73: 56-74. [11]Xu S S, Liu Y W, Zhang Y, et al. Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions[J]. Materials Research Letters, 2020, 8(5): 187-194. [12]Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Materialia, 2013, 61(16): 5996-6005. [13]沈 琴, 王晓姣, 赵安宇, 等. Mn对钢中富Cu相和NiAl相复合析出过程的影响[J]. 金属学报, 2016, 52(5): 513-518. Shen Qin, Wang Xiaojiao, Zhao Anyu, et al. Effect of Mn on composite precipitation process of Cu rich phase and NiAl phase in steel[J]. Acta Metallurgica Sinica, 2016, 52(5): 513-518. [14]李 彤. Mn、Ni元素对钢中富Cu相析出强化的影响[D]. 上海: 上海大学, 2019. Li Tong. Effect of Mn and Ni on precipitation strengthening of Cu rich phase in steel[D]. Shanghai: Shanghai University, 2019. [15]陈 刚, 潘 涛, 李才巨, 等. Ni含量对Cu沉淀强化钢组织与力学性能的影响[J]. 金属热处理, 2016, 41(3): 155-159. Chen Gang, Pan Tao, Li Caiju, et al. Effect of Ni content on microstructure and mechanical properties of Cu precipitation strengthened steel[J]. Heat Treatment of Metals, 2016, 41(3): 155-159. [16]刘 欢, 柴 锋, 丁汉林, 等. Ni含量对淬火态含Cu时效钢显微组织的影响[J]. 材料热处理学报, 2020, 41(6): 128-135. Liu Huan, Chai Feng, Ding Hanlin, et al. Effect of Ni content on microstructure of quenched Cu containing aging steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(6): 128-135. [17]周邦新, 王均安, 刘庆东, 等. 合金元素Ni对压力容器模拟钢中富Cu原子团簇析出的影响[C]//中国核学会. 中国核科学技术进展报告—中国核学会2009年学术年会论文集(第一卷·第4册). 北京: 原子能出版社, 2009: 13-20. Zhou Bangxin, Wang Junan, Liu Qingdong, et al. Effect of alloying element Ni on precipitation of Cu-rich atomic clusters in simulated steel of pressure vessel[C]//Chinese Nuclear Society. Progress Report on Nuclear Science and Technology in China——Proceedings of the 2009 Annual Conference of the Chinese Nuclear Society(Vol. I, Vol. 4). Beijing: Atomic Energy Press, 2009: 13-20. [18]余锡模, 赵世金. 含Cu和Ni低碳高强度钢等时回火析出富Cu相的研究[J]. 金属学报, 2013, 49(5): 569-575. Yu Ximo, Zhao Shijin. Study on Cu precipitation of the low C high strength steel containing Cu and Ni during isochronal tempering[J]. Acta Metallurgica Sinica, 2013, 49(5): 569-575. [19]李 彤, 李嘉宝, 刘文庆. 镍对Fe-Cu-Ni钢中富铜相析出强化的影响[J]. 上海金属, 2020, 42(2): 1-7. Li Tong, Li Jiabao, Liu Wenqing. Effect of nickel on strengthening of Fe-Cu-Ni steel by precipitation of copper-rich phase[J]. Shanghai Metals, 2020, 42(2): 1-7. [20]刘 欢. Ni含量对含Cu时效钢强韧化机理影响[D]. 马鞍山: 安徽工业大学, 2020. Liu Huan. Effect of Ni content on strengthening and toughening mechanism of Cu-bearing aging steel[D]. Maanshan: Anhui University of Technology, 2020. [21]梁梦斐, 王海燕, 王 超, 等. 合金元素Ni对Fe-Cu合金析出过程的影响[J]. 稀有金属, 2021, 45(1): 117-122. Liang Mengfei, Wang Haiyan, Wang Chao, et al. Precipitation process of copper-containing steel with addition of Ni[J]. Chinese Journal of Rare Metals, 2021, 45(1): 117-122. [22]Hofinger M, Turk C, Ognianov M, et al. Precipitation reactions in a Cu-Ni-Al medium carbon alloyed dual hardening steel[J]. Materials Characterization, 2020, 160: 110126. [23]Zhou B C, Yang T, Zhou G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning[J]. Acta Materialia, 2021, 205: 116561. [24]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. |