[1]Cao Yulong, Dong Yanwu, Jiang Zhouhua, et al. Characteristics of high speed steel/ductile cast iron composite roll manufactured by electroslag remelting cladding[J]. ISIJ International, 2021, 61(7): 2127-2134. [2]王 强, 杨涤心, 魏世忠, 等. 轧辊用高钒高速钢、高铬铸铁滚动磨损性能研究[J]. 材料热处理学报, 2006, 27(6): 84-88. Wang Qiang, Yang Dixin, Wei Shizhong, et al. Investigation of rolling friction behavior of high vanadium high speed steel and high chrome cast iron[J]. Transactions of Materials and Heat Treatment, 2006, 27(6): 84-88. [3]Wang Fangfang, Xu Liujie. Microstructure and erosion wear characterization of a new cast high-vanadium-chromium alloy (HVCA)[J]. International Journal of Metalcasting, 2023, 17(1): 466-480. [4]Xu Liujie, Xing Jiandong, Wei Shizhong, et al. Study on relative wear resistance and wear stability of high-speed steel with high vanadium content[J]. Wear, 2007, 262(3/4): 253-261. [5]Elena Pereloma, David Cortie, Navjeet Singh, et al. Uncovering the mechanism of dislocation interaction with nanoscale (<4 nm) interphase precipitates in microalloyed ferritic steels[J]. Materials Research Letters, 2020, 8(9): 341-347. [6]Wei Shizhong, Zhu Jinhua, Xu Liujie. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel[J]. Tribology International, 2006, 39(7): 641-648. [7]Xu Liujie, Chen Huimin, Wei Shizhong, et al. Morphology of in-situ VC ceramics in high speed steel with high vanadium content[J]. Advanced Materials Research, 2010, 105-106: 46-48. [8]徐流杰, 魏世忠, 龙 锐. 高钒高速钢中碳化钒的形态分布研究[J]. 铸造, 2003, 52(11): 1069-1073. Xu Liujie, Wei Shizhong, Long Rui, et al. Research on morphology and distribution of vanadium carbide in high vanadium high speed steel[J]. Foundry, 2003, 52(11): 1069-1073. [9]Xu Liujie, Wei Shizhong, Han Mingru, et al. Effect of carbides on wear characterization of high-alloy steels under high-stress rolling-sliding condition[J]. Tribology Transactions, 2014, 57(4): 631-636. [10]Wang Jing, Fu Sijing. Production of in situ vanadium carbide particulate reinforced iron matrix composite[J]. Materials Science, 2014, 20(4): 409-413. [11]薛 屺, 易 诚, 周 毅, 等. 淬火温度对高钒高速钢摩擦磨损性能的影响[J]. 金属热处理, 2017, 42(11): 156-160. Xue Qi, Yi Cheng, Zhou Yi, et al. Effect of quenching temperature on friction and wear properties of high vanadium high speed steel[J]. Heat Treatment of Metals, 2017, 42(11): 156-160. [12]Singh S B, Bhadeshia H K D H. Estimation of bainite plate-thickness in low-alloy steels[J]. Materials Science and Engineering A, 1998, 245(1): 72-79. [13]孙晓文, 林诗慧, 王天生. 高碳高硅纳米贝氏体钢回火后的组织与力学性能[J]. 材料热处理学报, 2021, 42(6): 98-106. Sun Xiaowen, Lin Shihui, Wang Tiansheng. Microstructure and mechanical properties of tempered high-C-Si nano-bainite steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(6): 98-106. [14]尹朝朝, 胡 锋, 郑 花, 等. 纳米贝氏体钢残奥细化及其力学性能调控研究进展[J]. 材料热处理学报, 2021, 42(1): 1-13. Yin Chaochao, Hu Feng, Zheng Hua, et al. Research progress on retained austenite refinement and controlling of mechanical properties of nano-structured bainitic steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(1): 1-13. [15]Zhang Fucheng, Yang Zhinan. Development of and perspective on high-performance nanostructured bainitic bearing steel[J]. Engineering, 2019, 5(2): 319-328. [16]Kirbis Peter, Anzel Ivan, Rudolf Rebeka, et al. Novel Approach of nanostructured bainitic steels' production with improved toughness and strength[J]. Materials, 2020, 13(5): 1220. [17]Du Yuzhou, Wang Xiaolong, Zhang Dongya, et al. A superior strength and sliding-wear resistance combination of ductile iron with nanobainitic matrix[J]. Journal of Materials Research and Technology, 2021, 11: 1175-1183. [18]周霆伟, 赵 海, 周红伟, 等. 原始组织对高速车轮钢滚滑接触疲劳磨损性能的影响[J]. 材料热处理学报, 2020, 41(11): 110-117. Zhou Tingwei, Zhao Hai, Zhou Hongwei, et al. Influences of microstructure on rolling-slip contact fatigue wear properties of high speed wheel steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(11): 110-117. [19]Efremenko V G, Hesse O, Friedrich Th, et al. Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite[J]. Wear, 2019, 418-419: 24-35. [20]Song Zhaohuan, Zhao Songhao, Jiang Tao, et al. Effect of nanobainite content on the dry sliding wear behavior of an Al-alloyed high carbon steel with nanobainitic microstructure[J]. Materials, 2019, 12(10): 1618. [21]Zhao J, Guo K, He Y M, et al. Extremely high strength achievement in medium-C nanobainite steel[J]. Scripta Materialia, 2018, 152: 20-23. [22]Rios-Diez Oscar, Aristizabal-Sierra Ricardo, Serna-Giraldo Claudia, et al. Wear behavior of nanostructured carbo-austempered cast steels under rolling-sliding conditions[J]. Journal of Materials Research and Technology, 2021, 11: 1343-1355. [23]徐流杰, 李 洲, 魏世忠. 高钒高速钢回火过程中碳化钒析出与残留奥氏体转变[J]. 金属热处理, 2016, 41(5): 6-11. Xu Liujie, Li Zhou, Wei Shizhong. VC precipitation and retained austenite transformation of high-vanadium high-speed steel during tempering[J]. Heat Treatment of Metals, 2016, 41(5): 6-11. [24]Yang Z N, Liu C B, Zhang C Y, et al. Microplasticity behavior of multiphase high-strength nanobainitic steel based on a modified law of mixtures[J]. Materials Science and Engineering A, 2021, 825: 1-13. [25]Cullity B D, Stock S R. Elements of X-ray Diffraction[M]. 3rd ed. New Jersey: Prentice Hall, 2001: 388-395. |