[1]白韶斌, 牛伟强, 肖文涛, 等. 中锰钢的研究进展及未来研究展望[J]. 热加工工艺, 2022, 51(14): 1-9. Bai Shaobin, Niu Weiqiang, Xiao Wentao, et al. Research progress and future research prospect of medium Mn steels[J]. Hot Working Technology, 2022, 51(14): 1-9. [2]田亚强, 曹仲乾, 毕文强, 等. 不同轧制工艺中锰钢I&Q&P处理后的组织和力学性能[J]. 热加工工艺, 2022, 51(2): 133-137. Tian Yaqiang, Cao Zhongqian, Bi Wenqiang, et al. Microstructure and mechanical properties of medium-Mn steel with different rolling processes after I&Q&P heat treatment[J]. Hot Working Technology, 2022, 51(2): 133-137. [3]崔海军, 王春风, 桑振远, 等. 退火对汽车用0.1C-7Mn-0.3Si中锰钢组织与力学性能的影响[J]. 热加工工艺, 2020, 49(18): 135-137. Cui Haijun, Wang Chunfeng, Sang Zhenyuan, et al. Effects of annealing on microstructure and mechanical properties of 0.1C-7Mn-0.3Si medium manganese steel for automobile[J]. Hot Working Technology, 2020, 49(18): 135-137. [4]Xiao F, Cao Y, Qiao G, et al. Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels[J]. Journal of Iron and Steel Research, International, 2012, 19(11): 52-56. [5]Liu C, Peng Q, Xue Z, et al. Anovel cyclic-quenching-ART for stabilizing austenite in Nb-Mo micro-alloyed medium-Mn steel[J]. Metals, 2019, 9(10): 1090. [6]Liu C, Peng Q, Xue Z, et al. Microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn TRIP steels[J]. Materials, 2018, 11(11): 2242. [7]Liu C, Peng Q, Xue Z, et al. Microstructure-tensile properties relationship and austenite stability of a Nb-Mo micro-alloyed medium-Mn TRIP steel[J]. Metals, 2018, 8(8): 615. [8]Wang L, Li M, Tan H, et al. Enhanced mechanical properties of a gradient nanostructured medium manganese steel and its grain refinement mechanism[J]. Journal of Materials Engineering and Performance, 2020, 29(6): 3812-3823. [9]Wang J J, Hui W, Xie Z, et al. Hydrogen embrittlement of a cold-rolled Al-containing medium-Mn steel: Effect of pre-strain[J]. International Journal of Hydrogen Energy, 2020, 45(41): 22080-22093. [10]Sahoo B K, Srivastava V C, Mahato B, et al. Microstructure-mechanical property evaluation and deformation mechanism in Al added medium Mn steel processed through intercritical rolling and annealing[J]. Materials Science and Engineering A, 2021, 799: 140100. [11]Zhang B G, Zhang X M, Wang G D, et al. Age-hardening medium Mn steel with high strength and large ductility[J]. Materials Science and Engineering A, 2019, 756: 35-40. [12]Yan S, Li T, Liang T, et al. By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously[J]. Materials Science and Engineering A, 2019, 758: 79-85. [13]Luo L, Li W, Liu S, et al. Effect of intermediate temperature annealing on the stability of retained austenite and mechanical properties of medium Mn-TRIP steel[J]. Materials Science and Engineering A, 2018, 742: 102. [14]Mishra G, Chandan A K, Kundu S. Hot rolled and cold rolled medium manganese steel: Mechanical properties and microstructure[J]. Materials Science and Engineering A, 2017, 701: 319-327. [15]Zou Y, Xu Y B, Han D T, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel[J]. Materials Science and Engineering A, 2018, 729: 423-432. [16]Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Materialia, 2014, 78: 369-377. [17]Zhang R, Cao W Q, Peng Z J, et al. Intercritical rolled induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel[J]. Materials Science and Engineering A, 2013, 583: 84-88. [18]Lee Y, Kim J N, Kim G, et al. Improved cold-rollability of duplex lightweight steels utilizing deformation-induced ferritic transformation[J]. Materials Science and Engineering A, 2019, 742: 835-841. [19]Liu C, Peng Q, Xue Z, et al. Effect of different heat treatment processes on microstructure evolution and tensile properties of hot-rolled medium-Mn steel[J]. Transactions of the Indian Institute of Metals, 2020, 73(9): 2221-2229. [20]Srivastava A K, Bhattacharjee D, Jha G, et al. Microstructural and mechanical characterization of C-Mn-Al-Si cold-rolled TRIP-aided steel[J]. Materials Science and Engineering A, 2007, 445: 549-557. [21]Jha B K, Avtar R, Dwivedi V S. Structure-property correlation in low carbon low alloy high strength wire rods/wire containing retained austenite[J]. Transactions of the Indian Institute of Metals, 1996, 49(3): 133-142. [22]Oliferuk W, Świątnicki W A, Grabski M W. Rate of energy storage and microstructure evolution during the tensile deformation of austenitic steel[J]. Materials Science and Engineering A, 1993, 161(1): 55-63. [23]Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Materialia, 2015, 84: 229-236. [24]Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite[J]. Acta Materialia, 2015, 84: 1-8. [25]Godet S, Jacques P J. Beneficial influence of an intercritically rolled recovered ferritic matrix on the mechanical properties of TRIP-assisted multiphase steels[J]. Materials Science and Engineering A, 2015, 645: 20-27. [26]Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel[J]. Materials Science and Engineering A, 2017, 698: 126-135. [27]Cai Z H, Ding H, Misra R D K, et al. Unique serrated flow dependence of critical stress in a hot-rolled Fe-Mn-Al-C steel[J]. Scripta Materialia, 2014, 71: 5-8. [28]Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel[J]. Materials Science and Engineering A, 2015, 639: 559-566. [29]Li Z C, Ding H, Misra R D K, et al. Microstructural evolution and deformation behavior in the Fe-(6, 8.5)Mn-3Al-0.2C TRIP steels[J]. Materials Science and Engineering A, 2016, 672: 161-169. [30]Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Materials Science and Engineering A, 2016, 673: 63-72. [31]蔡志辉. 高强塑性中锰钢的组织演变及力学性能的研究[D]. 沈阳: 东北大学, 2015. Cai Zhihui. Study on microstructural evolution and mechanical properties of medium manganese steels with superior strength and ductility[D]. Shenyang: Northeast University, 2015. [32]Luo H, Liu J, Dong H. A novel observation on cementite formed during intercritical annealing of medium Mn steel[J]. Metallurgical and Materials Transactions A, 2016, 47(6): 3119-3124. |