[1]Tian Y Z, Bai Y, Chen M C, et al. Communication enhanced strength and ductility in an ultrafine-grained Fe-22Mn-0.6C austenitic steel having fully recrystallized structure[J]. Metallurgical and Materials Transactions, 2014, 45(12): 5300-5304. [2]满廷慧, 彭 伟, 王子波, 等. Fe-Mn-Al-C低密度钢研究现状及展望[J]. 中国冶金, 2022, 32(1): 11-20. Man Tinghui, Peng Wei, Wang Zibo, et al. Research progress and prospect of Fe-Mn-Al-C low-density steels[J]. China Metallurgy, 2022, 32(1): 11-20. [3]刘春泉, 彭其春, 薛正良, 等. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581. Liu Chunquan, Peng Qichun, Xue Zhengliang, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel[J]. Materials Reports, 2019, 33(15): 2572-2581. [4]Qiao Y X, Wang X Y, Yang L L, et al. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel[J]. Journal of Materials Science and Technology, 2022, 107(4): 197-206. [5]Zheng Z B, Long J, Guo Y, et al. Corrosion and impact-abrasion-corrosion behaviors of quenching-tempering martensitic Fe-Cr alloy steels[J]. Journal of Iron and Steel Research International, 2022, 29(11): 1853-1863. [6]曾泽瑶, 杨 钢, 杨银辉, 等. TWIP不锈钢层错能计算、塑韧性和耐蚀性能研究[J]. 钢铁研究学报, 2021, 33(5): 443-451. Zeng Zeyao, Yang Gang, Yang Yinhui, et al. Study on stacking fault energy calculation, plastic toughness and corrosion resistance properties of TWIP stainless steel[J]. Journal of Iron and Steel Research, 2021, 33(5): 443-451. [7]Hui Z, Wang, Xiu R, et al. Analysis of the transformation-induced plasticity effect during the dynamic deformation of high-manganese steel[J]. Journal of Materials Science and Technology, 2015, 31(2): 191-198. [8]Zambrano O A. A general perspective of Fe-Mn-Al-C steels[J]. Journal of Materials Science, 2018, 53(20): 14003-14062. [9]Huang Z Y, Jiang Y S, Hou A, et al. Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels[J]. Journal of Materials Science and Technology, 2017, 33(12): 1531-1539. [10]马 涛, 李慧蓉, 高建新, 等. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161. Ma Tao, Li Huirong, Gao Jianxin, et al. Effect of alloying elements and aging treatment on the properties of kappa-carbide in Fe-Mn-Al-C low density steels: A review[J]. Materials Reports, 2020, 34(11): 11153-11161. [11]杨 壹, 郑志斌, 叶志国, 等. 轻质高锰钢的组织及力学性能[J]. 钢铁研究学报, 2021, 33(11): 1189-1197. Yang Yi, Zheng Zhibin, Ye Zhiguo, et al. Microstructure and mechanical properties of lightweight high manganese steel[J]. Journal of Iron and Steel Research, 2021, 33(11): 1189-1197. [12]Zheng Z B, Long J, Wang S, et al. Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution[J]. Corrosion Science, 2021, 184(5): 109382. [13]邢 梅, 林方敏, 唐立志, 等. Al元素对Fe-Mn-Al-C系低密度钢的影响特性综述[J]. 中国冶金, 2022, 32(2): 15-26. Xing Mei, Lin Fangmin, Tang Lizhi, et al. Effect of Al on properties of Fe-Mn-Al-C low density steel[J]. China Metallurgy, 2022, 32(2): 15-26. [14]丁小理, 罗 杰, 李建湘, 等. 热处理对6013铝合金显微组织、力学性能和氧化膜质量的影响[J]. 材料研究与应用, 2020, 14(1): 36-40, 54. Ding Xiaoli, Luo Jie, Li Jianxiang, et al. Effect of heat treatment on microstructure, mechanical properties and oxide film quality of 6013 aluminum alloy[J]. Materials Research and Application, 2020, 14(1): 36-40, 54. [15]Lee S I, Yun C, Hwang B, et al. Effect of grain size on the tensile properties of an austenitic high-manganese steel[J]. Korean Journal of Materials Research, 2016, 26(6): 325-331. [16]Tian Y Z, Bai Y, Chen M C, et al. Enhanced strength and ductility in an ultrafine-grained Fe-22Mn-0.6C austenitic steel having fully recrystallized structure[J]. Metallurgical and Materials Transactions A, 2014, 45(12): 5300-5304. [17]沈国慧, 胡 斌, 杨占兵, 等. 回火温度对含δ铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174. Shen Guohui, Hu Bin, Yang Zhanbing, et al. Influence of tempering temperature on mechanical properties and microstructures of high-Al-contained medium Mn steel having δ-ferrite[J]. Acta Metallurgica Sinica, 2022, 58(2): 165-174. [18]郭 明, 卜文德, 剡苏荣, 等. 激光功率对Q235钢接头组织和力学性能的影响[J]. 材料研究与应用, 2021, 15(5): 502-509. Guo Ming, Bu Wende, Shan Surong, et al. Effect of laser power on the microstructure and mechanical properties of Q235 steel joint[J]. Materials Research and Application, 2021, 15(5): 502-509. [19]曹晨星, 王存宇, 张 婧, 等. 冷却速率对奥氏体型FeMnAlC钢组织和性能的影响[J]. 钢铁研究学报, 2022, 34(3): 272-279. Cao Chenxing, Wang Cunyu, Zhang Jing, et al. Effect of cooling rate on microstructure and properties of austenitic FeMnAlC steel[J]. Journal of Iron and Steel Research, 2022, 34(3): 272-279. [20]常 成, 闫星辰, Gardan Julien, 等. 激光选区熔化成形nano-WC/CX钢微观组织及机械性能初探[J]. 材料研究与应用, 2021, 15(4): 309-317. Chang Cheng, Yan Xingchen, Gardan Julien, et al. Exploration on the microstructure and mechanical properties of the selective laser melted nano-WC/CX steel[J]. Materials Research and Application, 2021, 15(4): 309-317. [21]Figueiredo R B, Langdon T G. Deformation mechanism in ultrafine-grained metals with an emphasis on the Hall-Petch relationship andstrain rate sensitivity[J]. Journal of Materials Research and Technology, 2021, 14(9): 137-159. [22]王 辉, 刘满平, 唐 恺, 等. 大塑性变形制备超细晶/纳米晶Al-Mg铝合金的研究进展[J]. 材料导报, 2016, 30(15): 119-123. Wang Hui, Liu Manping, Tang Kai, et al. Advances in ultrafine-grained and nanocrystalline Al-Mg aluminum alloys processed by severe plastic deformation[J]. Materials Reports, 2016, 30(15): 119-123. [23]钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006. [24]王春奕, 张全新, 杨流鹃, 等. 航空用小口径薄壁不锈钢无缝钢管缺陷分析及工艺改进[J]. 材料研究与应用, 2022, 16(4): 614-619. Wang Chunyi, Zhang Quanxin, Yang Liujuan, et al. Defect analysis and process improvement of small diameter thin-wall stainless steel seamless pipe for aviation applications[J]. Materials Research and Application, 2022, 16(4): 614-619. [25]李俊澎, 杜 鑫, 崔 烨, 等. 固溶处理对轻量高锰钢组织及力学性能的影响[J]. 金属热处理, 2018, 43(7): 109-114. Li Junpeng, Du Xin, Cui Ye, et al. Effect of solution treatment on microstructure and mechanical properties of light weight high manganese steel[J]. Heat Treatment of Metals, 2018, 43(7): 109-114. |