[1]乔志霞, 刘永长, 严泽生, 等. 冷却速度对30CrNi3MoV超高强钢组织转变的影响[J]. 金属热处理, 2009, 34 (5): 25-27. Qiao Zhixia, Liu Yongchang, Yan Zesheng, et al. Effect of cooling rate on microstructure transformation in 30CrNi3MoV ultra-high strength steel[J]. Heat Treatment of Metals, 2009, 34 (5): 25-27. [2]储 滔, 沈 慧, 斯庭智. 30CrNi3MoV钢的热变形行为及热加工图[J]. 金属热处理, 2020, 45(10): 24-30. Chu Tao, Shen Hui, Si Tingzhi. Hot deformation behavior and hot processing map of 30CrNi3MoV steel[J]. Heat Treatment of Metals, 2020, 45(10): 24-30. [3]Reza T, Abbas N, Reza S, et al. Drawing of CCT diagrams by static deformation and consideration deformation effect on martensite and bainite transformation in NiCrMoV steel[J]. Journal of Materials Processing Technology, 2008, 196(1/3): 321-331. [4]Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 219-237. [5]田亚强, 田 耕, 郑小平, 等. C、Mn元素对淬火配分贝氏体钢残留奥氏体稳定性的影响[J]. 金属热处理, 2019, 44(7): 112-116. Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. Influence of C and Mn elements on stability of retained austenite in quenching and partitioning bainitic steel[J]. Heat Treatment of Metals, 2019, 44(7): 112-116. [6]Wang Z, and Huang M X, Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite[J]. International Journal of Plasticity, 2020, 134: 102851. [7]刘 曼, 胡海江, 田俊羽, 等. 贝氏体钢等温淬火和淬火-配分复合工艺[J]. 钢铁, 2021, 56(1): 69-74, 90. Liu Man, Hu Haijiang, Tian Junyu, et al. Integrated austempering and quenching-partitioning process of a bainitic steel[J]. Iron and Steel, 2021, 56(1): 69-74, 90. [8]Liu G, Li T, Yang Z, et al. On the role of chemical heterogeneity in phase transformations and mechanical behavior of flash annealed quenching and partitioning steels[J]. Acta Materialia, 2020, 201: 266-277. [9]孟晓越, 林万明, 宁安刚, 等. 热轧+淬火配分处理对Q235钢组织及性能的影响[J]. 金属热处理, 2021, 46(11): 71-77. Meng Xiaoyue, Lin Wanming, Ning Angang, et al. Effect of hot rolling+quenching and partitioning on microstructure and properties of Q235 steel[J]. Heat Treatment of Metals, 2021, 46(11): 71-77. [10]Hajy Akbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel[J]. Acta Materialia, 2016, 104: 72-83. [11]Pierce D T, Coughlin D R, Williamson D L, et al. Characterization of transition carbides in quench and partitioned steel microstructures by Mössbauer spectroscopy and complementary techniques[J]. Acta Materialia, 2015, 90: 417-430. [12]袁大勇, 尹 垒, 马善坤. Si含量及配分处理对Q&P钢残留奥氏体量及性能的影响[J]. 金属热处理, 2019, 44(3): 96-99. Yuan Dayong, Yin Lei, Ma Shankun. Effect of Si content and partitioning process on the quantity of retained austenite and property of Q&P steels[J]. Heat Treatment of Metals, 2019, 44(3): 96-99. [13]王官涛, 周永浪, 赵 卓, 等. 添加Si对马氏体不锈钢淬火-配分组织和性能的影响[J]. 材料工程, 2021, 49(8): 97-103. Wang Guantao, Zhou Yonglang, Zhao Zhuo, et al. Effect of Si addition on microstructure and properties of martensitic stainless steel treated by quenching and partitioning process[J]. Journal of Materials Engineering, 2021, 49(8): 97-103. [14]田亚强, 黎 旺, 郑小平, 等. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118. Tian Yaqiang, Li Wang, Zheng Xiaoping, et al. Application of alloy elements in quenching and partitioning steel: An overview[J]. Materials Reports, 2019, 33(7): 1109-1118. [15]杨晓斌, 董 纪, 田春英, 等. 磁场对25CrMo48V超高强度钢回火组织与力学性能的影响[J]. 金属热处理, 2022, 47(8): 24-33. Yang Xiaobing, Dong Ji, Tian Chunying, et al. Effect of magnetic field on tempered microstructure and mechanical properties of 25CrMo48V ultra-high strength steel[J]. Heat Treatment of Metals, 2022, 47(8): 24-33. [16]潘 磊, 王 琳, 刘安晋, 等. 新型高密度高强度含钨钢的组织与性能[J]. 兵器材料科学与工程, 2022, 45(3): 104-109. Pan Lei, Wang Lin, Liu Anjin, et al. Microstructure and properties of novel high density and high strength tungsten steel[J]. Ordnance Material Science and Engineering, 2022, 45(3): 104-109. [17]Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel[J]. Acta Materialia, 2015, 85: 243-249. [18]Ravi A M, Navarro-López A, Sietsma J, et al. Influence of martensite/austenite interfaces on bainite formation in low-alloy steels below Ms[J]. Acta Materialia, 2020, 188: 394-405. |