[1]Zeiler G. Martensitic steels for rotors in ultra-supercritical power plants[M]//Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Woodhead Publishing, 2017: 143-174. [2]Vanstone Rod, Chilton Ian, Jaworski Pawel. Manufacturing experience in an advanced 9%CrMoCoVNbNB alloy for ultra-supercritical steam turbine rotor forgings and castings[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135: 1-8. [3]Taylor M, Thomton D V. Experience in the manufacture of steam turbine components in advanced 9-12% chromium steels[J]. IMechE Conference Transactions, 1997(2): 125-139. [4]Gao Q Z, Liu Y C, Di X J, et al. Effect of austenitization temperature on phase transition features of high Cr ferritic heat-resistant steel[J]. Advanced Materials Research, 2012, 557-559(1): 175-181. [5]Gao Q Z, Liu Y C, Di X J, et al. Influence of austenitization temperature on phase transformation features of modified high Cr ferritic heat-resistant steel[J]. Nuclear Engineering and Design, 2013, 256: 148-152. [6]Karthikeyan T, Paul V T, Saroja S, et al. Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization treatment[J]. Journal of Nuclear Materials, 2011, 419(1/3): 256-262. [7]梁 刚, 黄有为, 钟 杰, 等. 淬火工艺对2Cr11Mo1VNbN钢性能及组织的影响[J]. 东方汽轮机, 2018(3): 46-49. Liang Gang, Huang Youwei, Zhong Jie, et al. Effect of quenching process on mechanical and microstructure of 2Cr11Mo1VNbN steel[J]. Dongfang Turbine, 2018(3): 46-49. [8]张 煜, 赵吉庆, 李 莉, 等. 固溶工艺对FB2转子钢晶粒长大行为的影响[J]. 钢铁研究学报, 2018, 30(11): 916-921. Zhang Yu, Zhao Jiqing, Li Li, et al. Effect of solid solution treatment on grain growth behavior of FB2 rotor steel[J]. Journal of Iron and Steel Research, 2018, 30(11): 916-921. [9]殷会芳, 赵吉庆, 杨 钢. 淬火温度对超超临界火电站用COST-FB2钢显微组织和室温强度的影响[J]. 材料导报, 2022, 36(14): 176-181. Yin Huifang, Zhao Jiqing, Yang Gang. Effect of quenching temperature on microstructures and room temperature strength of COST-FB2 steel used in ultra-supercritical coal-fired power plants[J]. Materials Reports, 2022, 36(14): 176-181. [10]康沫狂, 朱 明. 淬火合金钢中的奥氏体稳定化[J]. 金属学报, 2005, 41(7): 673-679. Kang Mokuang, Zhu Ming. Stablization of austenite in quenched alloy steels[J]Acta Metallurgica Sinica, 2005, 41(7): 673-679. [11]Sarikaya M. Alloying and heat treatment optimization of Fe/Cr/C steels for improved mechanical properties[D]. Lawrence Berkeley National Laboratory, 1979. [12]Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58(6): 492-495. [13]Yan P, Liu Z D, Bao H S, et al. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel[J]. Materials Science and Engineering A, 2014, 597: 148-156. [14]张 煜, 赵吉庆, 李 莉, 等. 630 ℃长期时效对FB2转子钢组织和力学性能的影响[J]. 金属热处理, 2019, 44(1): 142-147. Zhang Yu, Zhao Jiqing, Li Li, et al. Effect of long-term aging at 630 ℃ on structure and mechanical properties of FB2 rotor steel[J]. Heat Treatment of Metals, 2019, 44(1): 142-147. |