[1]张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11. Zhang Jinchao, Shi Shihong, Gong Yanqi, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1-11. [2]侯锁霞, 赵江昆, 李 强, 等. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(S1): 388-391. Hou Suoxia, Zhao Jiangkun, Li Qiang, et al. Study on the influencing factors of laser cladding defects[J]. Materials Reports, 2022, 36(S1): 388-391. [3]翁益青, 薛瑞雷, 满 蛟, 等. 热处理对高速激光熔覆不锈钢熔覆层组织性能的影响[J]. 金属热处理, 2023, 48(2): 276-283. Weng Yiqing, Xue Ruilei, Man Jiao, et al. Effect of heat treatment on microstructure and properties of stainless steel coating by high-speed laser cladding[J]. Heat Treatment of Metals, 2023, 48(2): 276-283. [4]刘德来, 王 博, 周攀虎, 等. 激光功率对高速激光熔覆Ni/316L层组织与力学性能的影响[J]. 金属热处理, 2021, 46(5): 213-218. Liu Delai, Wang Bo, Zhou Panhu, et al. Effect of laser power on microstructure and mechanical properties of high-speed laser clad Ni/316L layer[J]. Heat Treatment of Metals, 2021, 46(5): 213-218. [5]王燕燕, 李家豪, 舒林森, 等. 基于RSM与NSGA-II算法的激光熔覆参数多目标优化[J]. 激光与光电子学进展, 2022, 59(7): 195-201. Wang Yanyan, Li Jiahao, Shu Linsen, et al. Multi-objective optimization of laser cladding parameters based on RSM and NSGA-II algorithm[J]. Laser and Optoelectronics Progress, 2022, 59(7): 195-201. [6]Sommer N, Stredak F, Böhm S. High-speed laser cladding on thin-sheet-substrates—Influence of process parameters on clad geometry and dilution[J]. Coatings, 2021, 11(8): 952. [7]张 煜, 娄丽艳, 徐庆龙, 等. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540. Zhang Yu, Lou Liyan, Xu Qinglong, et al. Microstructure and wear resistance of Ni-based WC coating ultra-high speed laser cladding[J]. Acta Metallurgica Sinica, 2020, 56(11): 1530-1540. [8]Yang J X, Bai B, Ke H, et al. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding[J]. Optics and Laser Technology, 2021, 144: 107431. [9]Schopphoven T, Gasser A, Backes G. EHLA: extreme high-speed laser material deposition: Economical and effective protection against corrosion and wear[J]. Laser Technik Journal, 2017, 14(4): 26-29. [10]徐一飞, 孙耀宁, 王国建, 等. 高速激光熔覆铁基合金涂层的组织及性能研究[J]. 中国激光, 2021, 48(10): 222-230. Xu Yifei, Sun Yaoning, Wang Guojian, et al. Microstructure and properties of iron-based alloys coatings prepared by high-speed laser cladding[J]. Chinese Journal of Lasers, 2021, 48(10): 222-230. [11]王 强, 杨 驹, 牛文娟, 等. 高速激光熔覆铁基TY-2合金组织及力学性能分析[J]. 表面技术, 2021, 50(7): 66-73. Wang Qiang, Yang Ju, Niu Wenjuan, et al. Microstructure and mechanical properties of Fe-based TY-2 alloy coatings by high-speed laser cladding[J]. Surface Technology, 2021, 50(7): 66-73. [12]Yuan W Y, Li R F, Chen Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J]. Surface and Coatings Technology, 2021, 405: 126582. [13]娄丽艳, 张 煜, 徐庆龙, 等. 超高速激光熔覆低稀释率金属涂层微观组织及性能[J]. 中国表面工程, 2020, 33(2): 149-159. Lou Liyan, Zhang Yu, Xu Qinglong, et al. Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J]. China Surface Engineering, 2020, 33(2): 149-159. [14]Xu X, Du J L, Luo K Y, et al. Microstructural features and corrosion behavior of Fe-based coatings prepared by an integrated process of extreme high-speed laser additive manufacturing[J]. Surface and Coatings Technology, 2021, 422: 127500. [15]罗佳勤, 朱刚贤, 李加强, 等. 激光熔覆熔池温度场及流场数值模拟研究进展[J]. 表面技术, 2023, 52(4): 67-84. Luo Jiaqin, Zhu Gangxian, Li Jiaqiang, et al. Numerical simulation on temperature field and flow field of molten pool in laser cladding[J]. Surface Technology, 2023, 52(4): 67-84. [16]宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39. Song Jianli, Li Yongtang, Deng Qilin, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39. [17]张志彬, 张舒研, 陈永雄, 等. 合金组元与含量对激光熔覆高熵合金涂层的影响研究综述[J]. 中国表面工程, 2021, 34(5): 76-91. Zhang Zhibin, Zhang Shuyan, Chen Yongxiong, et al. Effects of alloy components and contents on high entropy alloy coatings by laser cladding: A review[J]. China Surface Engineering, 2021, 34(5): 76-91. [18]黄 标, 张 冲, 程 虎, 等. 激光熔覆FeCoCrxNiB高熵合金涂层的组织结构与耐磨性[J]. 中国表面工程, 2014, 27(6): 82-88. Huang Biao, Zhang Chong, Cheng Hu, et al. Microstructure and wear resistance of FeCoCrxNiB high-entropy alloy coatings prepared by laser cladding[J]. China Surface Engineering, 2014, 27(6): 82-88. [19]孙允森, 韩 阳, 张 义, 等. 激光熔覆304不锈钢微观组织研究[J]. 激光与光电子学进展, 2022, 59(11): 292-300. Sun Yunsen, Han Yang, Zhang Yi, et al. Microstructure of 304 stainless steel fabricated by laser cladding[J]. Laser and Optoelectronics Progress, 2022, 59(11): 292-300. [20]Astafurov S, Astafurova E. Phase composition of austenitic stainless steels in additive manufacturing: A review[J]. Metals, 2021, 11(7): 1052. |