[1]袁晓虹. 高Cr-Co-Mo轴承钢强韧机制及抗疲劳特性的多尺度研究[D]. 昆明: 昆明理工大学, 2015. [2]马 芳, 刘 璐. 航空轴承技术现状与发展[J]. 航空发动机, 2018, 44(1): 85-89. Ma Fang, Liu Lu. Present situation and development of aviation bearing technology[J]. Aeroengine, 2018, 44(1): 85-89. [3]李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报, 2016, 28(3): 1-12. Li Zhaokun, Lei Jianzhong, Xu Haifeng, et al. Current status and development trend of bearing steel in China and abroad[J]. Journal of Iron and Steel Research, 2016, 28(3): 1-12. [4]田 勇, 宋超伟, 葛泉江, 等. 航空用高温轴承钢CSS-42L热处理技术及其展望[J]. 轧钢, 2019, 36(6): 1-6. Tian Yong, Song Chaowei, Ge Quanjiang, et al. Status of research and development of heat treatment techniques for heat resistant bearing steel CSS-42L applied for aviation[J]. Steel Rolling, 2019, 36(6): 1-6. [5]郑 凯, 曹文全, 俞 峰, 等. 高温不锈渗碳轴承钢的研发现状与进展[J]. 钢铁, 2022, 57(7): 125-136. Zheng Kai, Cao Wenquan, Yu Feng, et al. Research status and progress of high temperature stainless carburized bearing steel[J]. Iron and Steel, 2022, 57(7): 125-136. [6]曹文全, 俞 峰, 王存宇, 等. 高端装备用轴承钢冶金质量性能现状及未来发展方向[J]. 特殊钢, 2021, 42(1): 1-10. Cao Wenquan, Yu Feng, Wang Cunyu, et al. Status and future development of metallurgical quality and performance of bearing steels for high-end equipment[J]. Special Steel, 2021, 42(1): 1-10. [7]李 雄, 林发驹, 杜思敏, 等. 高性能轴承钢的比较分析[J]. 金属热处理, 2021, 46(6): 14-20. Li Xiong, Lin Faju, Du Simin, et al. Comparative analysis of high performance bearing steels[J]. Heat Treatment of Metals, 2021, 46(6): 14-20. [8]Yu Xingfu, Shen Xiangyang, Wang Shisu, et al. Effect of quenching and tempering treatment on microstructure and mechanical properties of CSS-42L bearing steel[J]. Journal of Materials Engineering and Performance, 2022, 31(7): 5458-5466. [9]陈 凯. CSS-42L合金钢的磨削加工性研究[D]. 南京: 南京航空航天大学, 2013. [10]Wang Fangfang, Zhou Chungen, Zheng Lijing, et al. Improvement of the corrosion and tribological properties of CSS-42L aerospace bearing steel using carbon ion implantation[J]. Applied Surface Science, 2017, 392: 305-311. [11]Wang Fangfang, Zheng Lijing, Li Qiushi, et al. Corrosion properties of carbon ions implanted chromium coating prepared on CSS-42L aerospace bearing steel[J]. Surface and Coatings Technology, 2018, 349: 392-399. [12]肖茂果, 吕新杨, 李东辉, 等. 高Cr-Co-Mo高温轴承钢的强韧化机制[J]. 材料热处理学报, 2018, 39(9): 1-6. Xiao Maoguo, Lü Xinyang, Li Donghui, et al. Strengthening and toughening mechanisms of high Cr-Co-Mo heat resistant bearing steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(9): 1-6. [13]肖茂果, 李东辉, 吕新杨, 等. 热处理对高Cr-Co-Mo轴承钢组织与性能的影响[J]. 材料热处理学报, 2018, 39(8): 75-81. Xiao Maoguo, Li Donghui, Lü Xinyang, et al. Effects of heat treatment on microstructure and properties of a high Cr-Co-Mo alloyed heat resistant bearing steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(8): 75-81. [14]袁晓虹, 杨卯生, 甘建壮. 固溶温度对Cr-Co-Mo马氏体钢碳化物演变及力学性能的影响[J]. 金属热处理, 2020, 45(10): 108-113. Yuan Xiaohong, Yang Maosheng, Gan Jianzhuang. Effect of solid solution temperature on carbide evolution and mechanical properties of Cr-Co-Mo martensitic steel[J]. Heat Treatment of Metals, 2020, 45(10): 108-113. [15]吕新杨. 冷处理对高Cr-Co-Mo轴承钢微观组织及结构的影响[D]. 昆明: 昆明理工大学, 2019. [16]Wu Z W, Yang M S, Zhao K Y. Fatigue crack initiation and propagation at high temperature of new-generation bearing steel[J]. Metals, 2021, 11(1): 25. [17]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. International Materials Reviews, 1969, 14(1): 1-24. [18]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. [19]Prasad Y VR K. Processing maps: A status report[J]. Journal of Materials Engineering and Performance, 2003, 12(6): 638-645. [20]Prasad Y VR K. Dynamic materials model: Basis and principles[J]. Metallurgical and Materials Transactions A, 1996, 27(1): 235-236. |