[1]薛红阳, 蔡开龙, 李黄琪, 等. 基于RBF神经网络补偿的航空发动机H∞自适应控制研究[J]. 航空工程进展, 2023, 14(1): 128-134. Xue Hongyang, Cai Kailong, Li Huangqi, et al. Research on H∞ adaptive control of aero-engine based on RBF neural network compensation[J]. Advances in Aeronautical Science and Engineering, 2023, 14(1): 128-134. [2]卢 锐, 柯文敏, 况 侨, 等. 航空发动机16Ni3CrMoE钢制输出轴的热处理畸变控制[J]. 金属热处理, 2022, 47(2): 168-172. Lu Rui, Ke Wenmin, Kuang Qiao, et al. Heat treatment distortion control of aero-engine output shaft of 16Ni3CrMoE steel[J]. Heat Treatment of Metals, 2022, 47(2): 168-172. [3]张 亮, 吴 闯, 唐希浪, 等. 航空发动机故障实体识别方法及应用[J]. 空军工程大学学报(自然科学版), 2022, 23(2): 1-6. Zhang Liang, Wu Chuang, Tang Xilang, et al. A method of recognizing aero-engine fault entity and its application[J]. Journal of Air Force Engineering University (Natural Science Edition), 2022, 23(2): 1-6. [4]刘 莹. M50和M50Nil钢多向锻造碳化物及晶粒细化机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. Liu Ying. Study on carbide and grain refinement mechanism of M50 and M50Nil steel during multidirectional forging[D]. Harbin: Harbin Institute of Technology, 2018. [5]张晓静. 第二代航空轴承材料M50钢的研究现状与发展[J]. 现代制造技术与装备, 2021, 57(9): 120-122. Zhang Xiaojing. Research status and development of the second generation aviation bearing material M50 bearing steel[J]. Modern Manufacturing Technology and Equipment, 2021, 57(9): 120-122. [6]杨 平, 罗海文. 改进型M50高温用轴承钢的设计与研发[J]. 金属热处理, 2018, 43(8): 1-7. Yang Ping, Luo Haiwen. Design and development of improved M50 high-temperature bearing steel[J]. Heat Treatment of Metals, 2018, 43(8): 1-7. [7]张阁阁. M50钢强流脉冲电子束辐照多元合金化层的组织和性能[D]. 哈尔滨: 哈尔滨工业大学, 2018. Zhang Gege. Microstructure and performance of multi-component alloying layer on M50 steel after surface alloying treatment induced by high current pulsed electron beam[D]. Harbin: Harbin Institute of Technology, 2018. [8]Rosado L, Trivedi H K, Gerardi D T. Evaluation of fatigue and wear characteristics of M50 steel using high temperature synthetic turbine engine lubricants-Part II[J]. Wear, 1996, 196(1/2): 133-140. [9]刘 仁. M50钢热变形行为及其微观组织研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. Liu Ren. Research on hot deformation behaviour and microstructure of M50 steel[D]. Harbin: Harbin Institute of Technology, 2015. [10]Klecka M A, Subhash G, Arakere N K. Microstructure-property relationships in M50-NiL and P675 case-hardened bearing steels[J]. Tribology Transactions, 2013, 56(6): 1046-1059. [11]Beer O, Merklein C, Gerhard D, et al. Processing of the heat resistant bearing steel M50NiL by selective laser melting[J]. Htm-Journal of Heat Treatment and Materials, 2018, 73(4): 187-201. [12]Zhang Y, Yang M, Long S L, et al. Effect of initial state and deformation conditions on the hot deformation behavior of M50NiL steel[J]. Materials, 2020, 13(23): 5367. [13]丁开勇, 李 雷, 冀国良, 等. 热压缩参数对M50NiL轴承钢动态再结晶行为的影响[J]. 机械工程材料, 2017, 41(3): 63-66, 72. Ding Kaiyong, Li Lei, Ji Guoliang, et al. Effects of thermal compression parameters on dynamic recrystallization behavior of M50NiL bearing steel[J]. Materials For Mechanical Engineering, 2017, 41(3): 63-66, 72. [14]李红斌, 郑明月, 田 伟, 等. 基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程[J]. 机械工程材料, 2016, 40(11): 31-37, 43. Li Hongbin, Zheng Mingyue, Tian Wei, et al. Flow stress constitute equation of M50NiL gear steel based on Johnson-Cook model[J]. Materials for Mechanical Engineering, 2016, 40(11): 31-37, 43. [15]Derazkola H A, Gil E G, Murillo-Marrodan A, et al. Review on dynamic recrystallization of martensitic stainless steels during hot deformation: Part I-Experimental study[J]. Metals, 2021, 11(4): 572. [16]Lin Y C, Chen X M, Wen D X, et al. A physically-based constitutive model for a typical nickel-based superalloy[J]. Computational Materials Science, 2014, 83: 282-289. [17]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [18]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. [19]刘佩钰, 孟智娟, 刘子健, 等. 基于应变补偿及修正的Q460NH高强耐候钢本构方程[J]. 锻压技术, 2022, 47(3): 219-226. Liu Peiyu, Meng Zhijuan, Liu Zijian, et al. Constitutive equation of Q460NH high-strength weathering steel based on strain compensation and modification[J]. Forging and Stamping Technology, 2022, 47(3): 219-226. [20]Xia Y F, Long S, Wang T Y, et al. A study at the workability of ultra-high strength steel sheet by processing maps on the basis of DMM[J]. High Temperature Materials and Processes, 2017, 36(7): 657-667. [21]彭付申, 陈 鑫, 袁战伟, 等. W-20Cu复合材料热变形行为及应变补偿本构模型[J]. 兵器材料科学与工程, 2021, 44(6): 41-46. Peng Fushen, Chen Xin, Yuan Zhanwei, et al. Thermal deformation behavior and strain compensation constitutive model of W-20Cu composites[J]. Ordnance Material Science and Engineering, 2021, 44(6): 41-46. [22]刘艳芳, 冀国良, 李 雷, 等. M50NiL钢热变形过程中的物理型本构方程及微观组织演变[J]. 材料热处理学报, 2021, 42(8): 170-179. Liu Yanfang, Ji Guoliang, Li Lei, et al. A physically-based constitutive model and microstructure evolution of M50NiL steel during hot deformation[J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 170-179. [23]Hu M, Dong L M, Zhang Z G, et al. Correction of flow curves and constitutive modelling of a Ti-6Al-4V alloy[J]. Metals, 2018, 8(4): 256. [24]Abd el-aty A, Xu Y, Ha S, et al. Computational homogenization of tensile deformation behaviors of a third generation Al-Li alloy 2060-T8 using crystal plasticity finite element method[J]. Materials Science and Engineering A, 2018, 731: 583-594. [25]Luo W T, Cai P Z, Hou Z Y, et al. Hot-deformation behavior and processing maps of a low-carbon Fe-2wt% Nb steel[J]. Metals, 2021, 11(12): 1939. [26]Zhou P, Deng L, Zhang M, et al. Characterization of hot workability of 5052 aluminum alloy based on activation energy-processing map[J]. Journal of Materials Engineering and Performance, 2019, 28(10): 6209-6218. [27]Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. [28]Son K T, Kim M H, Kim S W, et al. Evaluation of hot deformation characteristics in modified AA5052 using processing map and activation energy map under deformation heating[J]. Journal of Alloys and Compounds, 2018, 740: 96-108. [29]张彦敏, 王永健, 张帅帅, 等. 含钛H13钢热变形行为及热加工图[J]. 塑性工程学报, 2020, 27(11): 144-150. Zhang Yanmin, Wang Yongjian, Zhang Shuaishuai, et al. Hot deformation behavior and hot processing map of Ti-containing H13 steel[J]. Journal of Plasticity Engineering, 2020, 27(11): 144-150. [30]吕学春, 赵文革, 袁明荣, 等. TC11钛合金热变形行为及微观组织演变[J]. 金属热处理, 2023, 48(5): 279-282. Lü Xuechun, Zhao Wenge, Yuan Mingrong, et al. Hot deformation behavior and microstructure evolution of TC11 titanium alloy[J]. Heat Treatment of Metals, 2023, 48(5): 279-282. |