[1]郑元凯, 李龙飞, 金 康, 等. Cu含量对重力铸造Al-Cu-Mg-Sc合金组织及力学性能的影响[J]. 金属热处理, 2022, 47(5): 53-58. Zheng Yuankai, Li Longfei, Jin Kang, et al. Influence of Cu content on microstructure and mechanical properties of Al-Cu-Mg-Sc alloy fabricated by gravity die casting[J]. Heat Treatment of Metals, 2022, 47(5): 53-58. [2]李旺珍, 孙有平, 何江美, 等. Al-Cu-Mg-Sc合金组织与性能的各向异性[J]. 金属热处理, 2020, 45(6): 119-123. Li Wangzhen, Sun Youping, He Jiangmei, et al. Anisotropy of microstructure and properties of Al-Cu-Mg-Sc alloy[J]. Heat Treatment of Metals, 2020, 45(6): 119-123. [3]鲁成华, 郑亚亚, 何俊龙, 等. Al-Cu-Mg合金组织与力学性能的新型热机械处理调控[J]. 中国有色金属学报, 2023, 33(4): 997-1010. Lu Chenghua, Zheng Yaya, He Junlong, et al. Control mechanism on microstructure and mechanical properties of Al-Cu-Mg alloy by novel thermo-mechanical treatment[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(4): 997-1010. [4]Wang Y, Wu X, Cao L, et al. Effect of trace Er on the microstructure and properties of Al-Zn-Mg-Cu-Zr alloys during heat treatments[J]. Materials Science and Engineering A, 2020, 792: 139807. [5]刘 阳, 吴晓蓝, 饶 茂, 等. Er、Zr微合金化对Al-Zn-Mg合金组织及性能的影响[J]. 金属热处理, 2023, 48(4): 18-22. Liu Yang, Wu Xiaolan, Rao Mao, et al. Effect of Er and Zr microalloying on microstructure and properties of Al-Zn-Mg alloy[J]. Heat Treatment of Metals, 2023, 48(4): 18-22. [6]孙红梅, 刘翠玲, 陈 健, 等. 微合金化元素Zr对5083铝合金组织和性能的影响[J]. 金属热处理, 2023, 48(3): 263-268. Sun Hongmei, Liu Cuiling, Chen Jian, et al. Effect of microalloying element Zr on microstructure and properties of 5083 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(3): 263-268. [7]Liu J, Yao P, Zhao N, et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu-Zr alloys[J]. Journal of Alloys and Compounds, 2016, 657: 717-725. [8]王 博, 高坤元, 丁宇升, 等. Er、Zr微合金化5083铝合金的超塑性[J]. 金属热处理, 2023, 48(4): 178-183. Wang Bo, Gao Kunyuan, Ding Yusheng, et al. Superplasticity of 5083 aluminum alloy containing Er and Zr[J]. Heat Treatment of Metals, 2023, 48(4): 178-183. [9]Tian S, Li J, Zhang J, et al. Effect of Zr and Sc on microstructure and properties of 7136 aluminum alloy[J]. Journal of Materials Research and Technology, 2019, 8(5): 4130-4140. [10]Chen Z, Yan K. Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation[J]. Scientific Reports, 2020, 10(1): 1-8. [11]Nie X, Zhang H, Zhu H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys[J]. Journal of Alloys and Compounds, 2018, 764: 977-986. [12]王松辉, 孙有平, 陶德福, 等. Zr含量对大应变轧制2524铝合金板材微观组织及力学性能的影响[J]. 材料热处理学报, 2018, 39(11): 28-37. Wang Songhui, Sun Youping, Tao Defu, et al. Effect of Zr content on microstructure and mechanical properties of 2524 aluminum alloys sheet fabricated by large strain rolling[J]. Transactions of Materials and Heat Treatment, 2018, 39(11): 28-37. [13]潘康观, 尹登峰, 余鑫祥, 等. Al-Cu-Mg-Ag-Sc-Zr合金的均匀化工艺[J]. 金属热处理, 2017, 42(5): 117-121. Pan Kangguan, Yin Dengfeng, Yu Xinxiang, et al. Homogenization processes of Al-Cu-Mg-Ag-Sc-Zr alloy[J]. Heat Treatment of Metals, 2017, 42(5): 117-121. [14]廖思敏, 苏玉长, 海丰龙. Al-Cu-Mg-Mn-Sc-Zr合金均匀化过程中的结构转变[J]. 金属热处理, 2020, 45(4): 55-59. Liao Simin, Su Yuchang, Hai Fenglong. Microstructural evolution of Al-Cu-Mg-Mn-Sc-Zr alloy during homogenization[J]. Heat Treatment of Metals, 2020, 45(4): 55-59. [15]蒋 成, 任抒琪, 刘翠秀, 等. 微量Zr对Al-Cu-Mg合金时效硬化行为及显微结构的影响[J]. 电子显微学报, 2021, 40(6): 643-649. Jiang Cheng, Ren Shuqi, Liu Cuixiu, et al. Effect of trace Zr on aging hardening and precipitation microstructure of Al-Cu-Mg alloy[J]. Journal of Chinese Electron Microscopy Society, 2021, 40(6): 643-649. [16]刘来梅, 王杰芳, 郭巧能, 等. Zr、Sc对Al-Cu-Mg-Ag-Ti合金耐蚀性能的影响[J]. 特种铸造及有色合金, 2018, 38(7): 779-783. Liu Laimei, Wang Jiefang, Guo Qiaoneng, et al. Effects of Zr、Sc on corrosion resistance of Al-Cu-Mg-Ag-Ti alloy[J]. Special Casting and Nonferrous Alloys, 2018, 38(7): 779-783. [17]孙晓旭, 郑子樵, 陈圆圆, 等. 含Zr Al-Cu-Mg合金的微观组织与疲劳行为[J]. 中国有色金属学报, 2009, 19(1): 50-55. Sun Xiaoxu, Zheng Ziqiao, Chen Yuanyuan, et al. Microstructures and fatigue behavior of Al-Cu-Mg alloy containing Zr[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(1): 50-55. [18]Özbilen S, Flower H M. Zirconium-vacancy binding and its influence on S′-precipitation in an Al-Cu-Mg alloy[J]. Acta Metallurgica, 1989, 37(11): 2993-3000. [19]陈蔚清, 徐观明, 崔紫依, 等. 超声滚压处理7B85合金的显微组织和力学性能[J]. 有色金属科学与工程, 2021, 12(6): 80-87. Chen Weiqing, Xu Guanming, Cui Ziyi, et al. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. [20]Ramezanalizadeh H, Emamy M, Shokouhimehr M. A novel aluminum based nanocomposite with high strength and good ductility[J]. Journal of Alloys and Compounds, 2015, 649: 461-473. [21]赵天舒, 骆红云. 深冷熨压对2024铝合金表面纳米化的影响[J]. 金属热处理, 2019, 44(S1): 365-368. Zhao Tianshu, Luo Hongyun. Effect of cryogenic burnishing on the surface nano crystallization of 2024 aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(S1): 365-368. [22]Roodposhti P S, Sarkar A, Murty K L, et al. Dislocation density evolution during creep of AZ31 Mg alloy: A study by X-ray diffraction line profile analysis[J]. Metallography, Microstructure and Analysis, 2015, 4(5): 337-343.[23]Li X, Xia W, Yan H, et al. High strength and large ductility of a fine-grained Al-Mg alloy processed by high strain rate hot rolling and cold rolling[J]. Materials Science and Engineering A, 2020, 787: 139481. [24]Zha M, Li Y, Mathiesen R H, et al. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Materialia, 2015, 84: 42-54. [25]王 振, 甘春雷, 李 锋, 等. Zr含量对工业纯铝组织及性能的影响[J]. 材料研究与应用, 2022, 16(2): 253-261. Wang Zhen, Gan Chunlei, Li Feng, et al. Effect of Zr content on microstructure and properties of commercial pure aluminum[J]. Materials Research and Application, 2022, 16(2): 253-261. [26]Roohollah J, Mohammad R T. Effect of stacking fault energy on deformation texture development of nanostructured materials produced by the ARB process[J]. Materials Science and Engineering A, 2014, 598: 263-276. |