[1]张传平. 20Cr1Mo1VTiB钢粗晶组织对高温紧固件安全性的分析[J]. 机械工程材料, 1984(1): 58-60. [2]王志武, 宋 涛. 高温服役3×105 h后汽缸螺栓用20Cr1Mo1V1钢的应力松弛性能[J]. 机械工程材料, 2013, 37(2): 74-77. Wang Zhiwu, Song Tao. Stress relaxation of 20Cr1Mo1V1 steel for cylinder bolt after working for 3×105 h at high temperature[J]. Materials for Mechanical Engineering, 2013, 37(2): 74-77. [3]王 飞, 夏尊美, 王红樱. 20Cr1Mo1VTiB汽轮机螺栓断裂失效分析[J]. 湖南电力, 2009, 29(5): 54-55, 58. [4]武志广, 龚雪婷, 李 鑫, 等. 热处理工艺对20Cr1Mo1VTiB螺栓钢持久性能的影响[J]. 钢铁, 2020, 55(6): 101-106. Wu Zhiguang, Gong Xueting, Li Xin, et al. Effect of heat treatment process on creep-rupture property of 20Cr1Mo1VTiB bolt steel[J]. Iron & Steel, 2020, 55(6): 101-106. [5]龚雪婷, 武志广, 李 鑫, 等. 热处理工艺对20Cr1Mo1VTiB螺栓钢组织及性能的影响[J]. 钢铁, 2018, 53(12): 105-111. Gong Xueting, Wu Zhiguang, Li Xin. et al. Effect of heat treatment process on microstructure and mechanical properties of 20Cr1Mo1VTiB steel[J]. Iron & Steel, 2018, 53(12): 105-111. [6]冯家伟, 牛梦超, 王 威, 等. 超高强度马氏体时效钢的力学行为与微观组织演化的关系[J]. 材料研究学报, 2019, 33(9): 641-649. Feng Jiawei, Niu Mengchao, Wang Wei, et al. Relationship between mechanical behavior and microstructure for an ultra-high strength maraging steel[J]. Chinese Journal of Materials Research, 2019, 33(9): 641-649. [7]刘正东, 程世长, 包汉生, 等. 钒对T122铁素体耐热钢组织和性能的影响[J]. 特殊钢, 2006, 27(1): 7-10. Liu Zhengdong, Cheng Shichang, Bao Hansheng, et al. Effect of vanadium on structure and properties of ferrite heat resistant steel T122[J]. Special Steel, 2006, 27(1): 7-10. [8]赵孟雅, 彭 涛, 赵吉庆, 等. 长期时效对20Cr1Mo1VTiB螺栓钢的组织和力学性能的影响[J]. 材料研究学报, 2020, 34(5): 321-327. Zhao Mengya, Peng Tao, Zhao Jiqing, et al. Effect of long-term aging on microstructure and mechanical properties of 20Cr1Mo1VTiB bolt steel[J]. Chinese Journal of Materials Research, 2020, 34(5): 321-327. [9]Wei F G, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel[J]. Metallurgical and Materials Transactions A, 2006, 37(2): 331-353. [10]Zhang M, Li M, Chi J, et al. Microstructure evolution, recrystallization and tribological behavior of TiC/WC composite ceramics coating[J]. Vacuum, 2019, 166: 64-71. [11]Zhu M L, Wang D Q, Xuan F Z. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni-Cr-Mo-V steel welded joint[J]. Materials Characterization, 2014, 87: 45-61. [12]Xiong H H, Zhang H H, Zhang H N, et al. Effects of alloying elements X (X=Zr, V, Cr, Mn, Mo, W, Nb, Y) on ferrite/TiC heterogeneous nucleation interface: First-principles study[J]. Journal of Iron and Steel Research International, 2017, 24(3): 328-334. [13]Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations[J]. Acta Materialia, 2012, 60(1): 208-217. [14]Jang J H, Lee C H, Han H N, et al. Modelling coarsening behavior of TiC precipitates in high strength, low alloy steels[J]. Materials Science and Technology, 2013, 29(9): 1074-1079. [15]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版, 2006. |