[1]袁志钟, 戴起勋. 金属材料学[M]. 3版.北京: 化学工业出版社, 2018. [2]于 波. 新型冷作模具钢的性能及热处理[J]. 热处理技术与装备, 2011, 32(5): 1-3, 6. Yu Bo. The properties and their heat treatment about new type cold-working dies steels[J]. Heat Treatment Technology and Equipment, 2011, 32(5): 1-3, 6. [3]邱 凌, 吴晓春. 国内外冷作模具钢发展概述[J]. 模具制造, 2017, 17(11): 89-96. Qiu Ling, Wu Xiaochun. Development of cold work die steel at home and abroad[J]. Die and Mould Manufacture, 2017, 17(11): 89-96. [4]谢殷子, 吴晓春, 李绍宏. 热处理工艺对SDC90新型冷作模具钢组织与性能的影响[J]. 机械工程材料, 2010, 34(6): 54-57. Xie Yinzi, Wu Xiaochun, Li Shaohong. Effect of heat treatment process on microstructure and properties of new type cold work die steel SDC90[J]. Materials for Mechanical Engineering, 2010, 34(6): 54-57. [5]邱华兴, 吴正环, 黎肖辉, 等. 稳定化处理对DC53钢力学性能及尺寸稳定性的影响[J]. 金属热处理, 2021, 46(9): 138-141. Qiu Huaxing, Wu Zhenghuan, Li Xiaohui, et al. Effect of stabilization treatment on mechanical properties and dimensional stability of DC53 steel[J]. Heat Treatment of Metals, 2021, 46(9): 138-141. [6]马春宇, 袁军平, 薄海瑞. 预调质处理对DC53模具钢组织和性能的影响[J]. 机械工程材料, 2013, 37(1): 29-31, 35. Ma Chunyu, Yuan Junping, Bo Hairui. Effect of beforehand quenching and tempering process on microstructure and properties of DC53 die steel[J]. Materials for Mechanical Engineering, 2013, 37(1): 29-31, 35. [7]Akhbarizadeh A, Shafyei A, Golozar M A. Effects of cryogenic treatment on wear behavior of D6 tool steel[J]. Materials and Design, 2009, 30(8): 3259-3264. [8]Buss K, Mari D. High temperature deformation mechanisms in cemented carbides and cermets studied by mechanical spectroscopy[J]. Materials Science and Engineering A, 2004, 370(1/2): 163-167. [9]Li S, Xie Y, Wu X. Hardness and toughness investigations of deep cryogenic treated cold work die steel[J]. Cryogenics, 2010, 50(2): 89-92. [10]Preciado M, Bravo P M, Alegre J M. Effect of low temperature tempering prior cryogenic treatment on carburized steels[J]. Journal of Materials Processing Technology, 2006, 176(1/3): 41-44. [11]Da Silva F J, Franco S D, Machado A R, et al. Performance of cryogenically treated HSS tools[J]. Wear, 2006, 261(5/6): 674-685. [12]Xie C, Zhou L, Min N, et al. Effect of deep cryogenic treatment on carbon segregation in Cr8Mo2SiV tool steel during tempering[J]. Philosophical Magazine Letters, 2017, 97(9): 372-377. [13]Zhirafar S, Rezaeian A, Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel[J]. Journal of Materials Processing Technology, 2007, 186(1/3): 298-303. [14]Qin S, Liu Y, Hao Q, et al. The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 4047-4055. [15]Wang K, Gu K, Miao J, et al. Toughening optimization on a low carbon steel by a novel quenching-partitioning-cryogenic-tempering treatment[J]. Materials Science and Engineering A, 2019, 743: 259-264. [16]陈秋龙, 杨安静, 林以佩. Cr12冷作模具钢下贝氏体/马氏体复相热处理工艺的研究[J]. 金属热处理, 1995, 20(9): 9-11. Chen Qiulong, Yang Anjing, Lin Yipei. Study on heat treating of bainite/martensite dual phase of Cr12 cold work die steel[J]. Heat Treatment of Metals, 1995, 20(9): 9-11. [17]何文超, 李志敏, 张 旭, 等. 贝氏体等温淬火对H13热作模具钢组织及热疲劳性能的影响[J]. 材料热处理学报, 2021, 42(5): 81-87. He Wenchao, Li Zhimin, Zhang Xu, et al. Effect of bainite isothermal quenching on microstructure and thermal fatigue performance of Hl3 hot working die steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 81-87. [18]李洋城, 程晓农, 罗 锐, 等. 热疲劳对B/M复相H13钢组织及力学性能的影响[J]. 金属热处理, 2020, 45(8): 17-21. Li Yangcheng, Cheng Xiaonong, Luo Rui, et al. Effect of thermal fatigue on microstructure and mechanical properties of B/M multiphase H13 steel[J]. Heat Treatment of Metals, 2020, 45(8): 17-21. [19]韦家波. M/B复相热处理工艺对H13钢组织与性能的影响规律[D]. 镇江: 江苏大学, 2020. [20]王梦飞. SKD11冷作模具钢的增韧热处理工艺及其组织与性能研究[D]. 镇江: 江苏大学, 2023. [21]吴红庆, 宁 辉, 胡峰荣, 等. Cr8Mo1SiV冷作模具钢大颗粒共晶碳化物的控制工艺研究[J]. 模具工业, 2019, 45(12): 42-46, 63. Wu Hongqing, Ning Hui, Hu Fengrong, et al. Study on controlling large particle eutectic carbide in Cr8MolSiV cold working die steel[J]. Die and Mould Industry, 2019, 45(12): 42-46, 63. [22]元 莎, 白玉冰, 周乐育, 等. 热处理工艺参数对Cr8冷作模具钢组织和性能的影响[J]. 锻压技术, 2020, 45(1): 168-172, 178. Yuan Sha, Bai Yubing, Zhou Leyu, et al. Influence of heat treatment parameters on microstructure and property of Cr8 cold working die steel[J]. Forging and Stamping Technology, 2020, 45(1): 168-172, 178. [23]迟宏宵, 马党参, 王 昌, 等. Cr8Mo2SiV钢二次硬化机理的研究[J]. 金属学报, 2010, 46(10): 1181-1185. Chi Xiaohong, Ma Dangshen, Wang Chang, et al. Study on secondary hardening mechanism of Cr8Mo2SiV steel[J]. Acta Metallurgica Sinica, 2010, 46(10): 1181-1185. [24]Kim H, Kang J Y, Son D, et al. Evolution of carbides in cold-work tool steels[J]. Materials Characterization, 2015, 107: 376-385. [25]王大鹏, 穆云超, 成晓哲, 等. 原料配比对放电等离子烧结钼碳化物的影响[J]. 粉末冶金技术, 2018, 36(1): 31-35. Wang Dapeng, Mu Yunchao, Cheng Xiaozhe, et al. Effect of raw material ratio on spark plasma sintering of molybdenum carbide[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. [26]Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability[J]. Acta Materialia, 2011, 59(11): 4653-4664. [27]方鸿生, 郑燕康, 周 欣. 中碳贝氏体/马氏体复相组织强韧性的研究[J]. 材料热处理学报, 1986, 7(1): 10-18. Fang Hongsheng, Zheng Yankang, Zhou Xin. The strength and toughness of the air-cooled microstructure of medium carbon bainite/martensite dual phase[J]. Transactions of Materials and Heat Treatment, 1986, 7(1): 10-18. |