[1]Deng D, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175(2): 121332-121373. [2]Lin Y, Luo Y, Wang E N, et al. Enhancement of flow boiling heat transfer in microchannel using micro-fin and micro-cavity surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 179(3): 121739-121752. [3]Gilmore N, Menictas C, Timchenko V. Open manifold microchannel heat sink for high heat flux electronic cooling with a reduced pressure drop[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120395-120409. [4]刘孟奇, 王建强, 王 宇. 不同掺杂设计对类金刚石涂层海水环境摩擦学性能的影响[J]. 金属热处理, 2020, 45(3): 186-190. Liu Mengqi, Wang Jianqiang, Wang Yu. Effect of doping design on tribological performances of DLC coating in seawater[J]. Heat Treatment of Metals, 2020, 45(3): 186-190. [5]Ahmadi A A, Arabbeiki M, Ali H M, et al. Configuration and optimization of a minichannel using water-alumina nanofluid by non-dominated sorting genetic algorithm and response surface method[J]. Nanomaterials, 2020, 10(5): 901-921. [6]Mehdi B, Mohammad J, Marjan G. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs[J]. Journal of Molecular Liquids, 2019, 273: 88-98. [7]Heydari, AliAkbari, Omid A, et al. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 2893-2912. [8]Behnampour A, Akbari O A, Safaei M R, et al. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 91: 15-31. [9]Jung S Y, Park H. Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121729-121739. [10]Yang Q, Zhao J Q, Huang Y P, et al. A diamond made microchannel heat sink for high-density heat flux dissipation[J]. Applied Thermal Engineering, 2019, 158: 113804-113816. [11]Yang Q, Miao J Y, Zhao J Q, et al. Flow boiling of ammonia in a diamond-made microchannel heat sink for high heat flux hotspots[J]. Journal of Thermal Science, 2020, 29(5): 241-252. [12]Ansari D, Ji H J. A silicon-diamond microchannel heat sink for die-level hotspot thermal management[J]. Applied Thermal Engineering, 2021, 194(1): 117131-117146. [13]Qi Z N, Zheng Y T, Zhu X H, et al. An ultra-thick all-diamond microchannel heat sink for single-phase heat transmission efficiency enhancement[J]. Vacuum, 2020, 177(1): 109377-109384. [14]Qi Z N, Zheng Y T, Wei J J, et al. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement[J]. Applied Thermal Engineering, 2020, 177(1): 115489-115502. [15]Tu J L, Shi J D, Chen L X, et al. Surface termination of the diamond microchannel and single-phase heat transfer performance[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123481-123490. [16]Kromka A, Breza J, Kadlecikova M, et al. Identification of carbon phases and analysis of diamond/substrate interfaces by Raman spectroscopy[J]. Carbon, 2005, 43(2): 425-429. [17]王宝和, 强伟丽, 于志家. 粗糙壁面上水纳米液滴润湿性的分子动力学模拟[J]. 河南化工, 2019, 36(9): 24-29. Wang Baohe, Qiang Weili, Yu Zhijia. Molecular dynamics simulation of wetting properties of water nanodroplets on rough surfaces[J]. He Nan Chemical Industry, 2019, 36(9): 24-29. [18]Cazabat A M, Stuart M. Dynamics of wetting: Effects of surface roughness[J]. The Journal of Physical Chemistry, 1986, 90(22): 5845-5849. [19]Dan Z, Liu Z, Wang J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457(1): 411-416. [20]刘峰斌, 陈文彬. 表面修饰金刚石薄膜导电性研究进展[J]. 功能材料, 2016, 47(12): 12050-12057. Liu Fengbin, Chen Wenbin. Research progress on conductivity of surface-modified diamond films[J]. Journal of Functional Materials, 2016, 47(12): 12050-12057. [21]Brown K J, Chartier E, Sweet E M, et al. Cleaning diamond surfaces using boiling acid treatment in a standard laboratory chemical hood[J]. Journal of Chemical Health and Safety, 2019, 26(6): 40-44. [22]Li F N, Akhvlediani R, Kuntumalla M K, et al. Oxygen bonding configurations and defects on differently oxidized diamond surfaces studied by high resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy measurements[J]. Applied Surface Science, 2019, 465: 313-319. [23]季根顺, 张育铭, 薛向军, 等. 碳纤维表面电镀铜层微观形貌表征及分析[J]. 金属热处理, 2017, 42(4): 163-166. Ji Genshun, Zhang Yuming, Xue Xiangjun, et al. Characterization and analysis on microstructure of copper plating layer on carbon fiber surface[J]. Heat Treatment of Metals, 2017, 42(4): 163-166. [24]Alba G, Villar M P, Alcántara R, et al. Surface states of (100) O-terminated diamond: Towards other 1× 1∶O reconstruction models[J]. Nanomaterials, 2020, 10(6): 1193-1208. [25]王立达, 刘贵昌, 邓新绿. 氟化类金刚石膜结构、性能及应用[J]. 真空, 2005(3): 15-19. Wang Lida, Liu Guichang, Deng Xinlü. Structure, properties and applications of diamond-like fluorinated carbon films[J]. Vacuum, 2005(3): 15-19. [26]Wang Y F, Wang W, Wei J, et al. Electrochemical route to bio-compatible fluorine-terminated diamond surface[J]. Carbon, 2021, 176: 83-87. |