[1]Raza M R, Ahmad F, Ikram N, et al. Development and strengthening of 2219 aluminium alloy by mechanical working and heat treatment[J]. Journal of Applied Sciences, 2011, 11(10): 1857-1861. [2]Li Xifeng, Lei Kun, Song Peng, et al. Strengthening of aluminum alloy 2219 by thermo-mechanical treatment[J]. Journal of Materials Engineering and Performance, 2015, 24: 3905-3911. [3]Son S K, Takeda M, Mitome M, et al. Precipitation behavior of an Al-Cu alloy during isothermal aging at low temperatures[J]. Materials Letters, 2005, 59(6): 629-632. [4]Kovarik L, Court S A, Fraser H L, et al. GPB zones and composite GPB/GPBII zones in Al-Cu-Mg alloys[J]. Acta Materialia, 2008, 56(17): 4804-4815. [5]桂奇文, 陈江华, 伍翠兰, 等. Al-Cu-Mg合金中T相的扫描透射电镜研究[J]. 电子显微学报, 2012, 31(4): 301-307. Gui Qiwen, Chen Jianghua, Wu Cuilan, et al. A HAADF-STEM study of T-phase in the Al-Cu-Mg alloys[J]. Journal of Chinese Electron Microscopy Society, 2012, 31(4): 301-307. [6]张海峰, 郝云飞, 李高辉, 等. 2219铝合金双轴肩搅拌摩擦焊工艺及接头组织性能研究[J]. 机械工程学报, 2022, 58(22): 250-257. Zhang Haifeng, Hao Yunfei, Li Gaohui, et al. Research on welding process and joint microstructure-properties of bobbin tool friction stir weld for 2219 aluminum alloy[J]. Journal of Mechanical Engineering, 2022, 58(22): 250-257. [7]Li Peilin, Xu Zhongfeng, Yu Chun, et al. Mechanical properties and microstructure analysis of refilling friction stir welding on 2219 aluminum alloy[J]. Acta Metallurgica Sinica, 2012, 25(3): 225-234. [8]Niu L Q, Li X Y, Zhang L, et al. Correlation between microstructure and mechanical properties of 2219-T8 aluminum alloy joints by VPTIG welding[J]. Acta Metallurgica Sinica, 2017, 30(5): 438-446. [9]王习锋, 陈康华, 陈送义, 等. T9I6断续时效对2219铝合金组织和力学性能的影响[J]. 材料热处理学报, 2019, 40(2): 55-61. Wang Xifeng, Chen Kanghua, Chen Songyi, et al. Effect of T9I6 interrupted aging on microstructure and mechanical properties of 2219 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(2): 55-61. [10]An L, Cai Y, Liu W, et al. Effect of pre-deformation on microstructure and mechanical properties of 2219 aluminum alloy sheet by thermomechanical treatment[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 370-375. [11]Natan M, Chihoski R A. Relationship between microstructure, hardness and electrical conductivity of 2219 aluminum[J]. Journal of Materials Science, 1983, 18(11): 3288-3298. [12]Son S K, Takeda M, Mitome M, et al. Precipitation behavior of an Al-Cu alloy during isothermal aging at low temperatures[J]. Materials Letters, 2005, 59(6): 629-632. [13]Phillips V A. Lattice resolution measurement of strain fields at Guinier-Preston zones in Al-3.0%Cu[J]. Acta Metallurgica, 1973, 21(3): 219-228. [14]Mondolfo L F. Aluminum Alloy: Structure and Properties[M]. London: Butterworth, 1976: 651-657. [15]刘 刚, 张国君, 丁向东, 等. 具有盘/片状, 棒/针状析出相铝合金的时效-屈服强度变化模型[J]. 稀有金属材料与工程, 2003, 32(12): 971-975. Liu Gang, Zhang Guojun, Ding Xiangdong, et al. A model for age strengthening of Al alloys with plate/disc-like or rod/needle-like precipitate[J]. Rare Metal Materials and Engineering, 2003, 32(12): 971-975. [16]Zhu A W, Chen J, Jr Starke E A. Precipitation strengthening of stress-aged Al-xCu alloys[J]. Acta Materialia, 2000, 48(9): 2239-2246. |