[1]Shrestha T, Basirat M, Charit I, et al. Creep deformation mechanisms in modified 9Cr-1Mo steel[J]. Journal of Nuclear Materials, 2012, 423(1-3): 110-119. [2]Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments[J]. Journal of Alloys and Compounds, 2018, 743: 332-364. [3]Hurtado-Noreña C, Danón C A, Luppo M I, et al. Evolution of minor phases in a P91 steel normalized and tempered at different temperatures[J]. Procedia Materials Science, 2015, 8: 1089-1098. [4]Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Materials Science and Engineering A, 2016, 664: 58-74. [5]Raj B, Choudhary B K. A perspective on creep and fatigue issues in sodium cooled fast reactors[J]. Transactions of the Indian Institute of Metals, 2010, 63(2-3): 75-84. [6]Karthikeyan T, Thomas Paul V, Saroja S, et al. Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization treatment[J]. Journal of Nuclear Materials, 2011, 419(1-3): 256-262. [7]Pešička J, Kuel R, Dronhofer A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2003, 51(16): 4847-4862. [8]Liu C, Yan Z, Dong Z, et al. Effects of two-step tempering treatment on the microstructural formation of T91 ferritic steels[J]. Solid State Phenomena, 2011, 172-174: 875-880. [9]Das C R, Albert S K, Bhaduri A K, et al. Characterization of ferrite in tempered martensite of modified 9Cr-1Mo steel using the electron backscattered diffraction technique[J]. Metallurgical and Materials Transactions A, 2011, 42(13): 3849-3852. [10]Galibois A, Dubã A. Similarities between the martinsitic and cold-worked structures of steels[J]. Canadian Metallurgical Quarterly, 2013, 6(2): 121-136. [11]Caron R N, Krauss G. The tempering of Fe-C lath martensite[J]. Metallurgical Transactions, 1972, 3(9): 2381-2389. [12]Galibois A, Dubã A. Recrystallization kinetics of martensitic extra-low carbon steels[J]. Canadian Metallurgical Quarterly, 2013, 3(4): 321-343. [13]张 开, 王 学, 倪满生, 等. 高温时效对P91钢组织及硬度的影响[J]. 金属热处理, 2022, 47(12): 7-12. Zhang Kai, Wang Xue, Ni Mansheng, et, al. Effect of high temperature aging on microstructure and hardness of P91 steel[J]. Heat Treatment of Metals, 2022, 47(12): 7-12. [14]张安文, 王 洋, 张志博, 等. 服役8.8万小时后超临界机组P91钢马氏体结构的退化行为[J]. 金属热处理, 2023, 48(2): 74-78. Zhang Anwen, Wang Yang, Zhang Zhibo, et al. Martensitic degeneration behavior of P91 steel served for eighty-eight thousand hours in a supercritical unit[J]. Heat Treatment of Metals, 2023, 48(2): 74-78. [15]Zhang Xuehua, Zeng Yanping, Cai Wenhe, et al. Study on the softening mechanism of P91 steel[J]. Materials Science and Engineering A, 2018, 728: 63-71. [16]Xu J X, Ma D F, Zhao Y F. Analysis of the causes of the massive ferrite in P91 steel[J]. Advanced Materials Research, 2012, 512-515: 1854-1857. [17]Lee U H, Kamikawa N, Miyamoto G, et al. Continuous dynamic recrystallization during warm deformation of tempered lath martensite in a medium carbon steel[J]. Key Engineering Materials, 2012, 508: 124-127. [18]Schmidt J. A calorimetric device for the investigation of transformations in solids in the temperature range 100 K-500 K[J]. Thermochimica Acta, 1989, 151(2): 333-344. [19]Christian J W. Mechanism of phase transformations in metals[J]. Nature, 1956, 177(4505): 419-421. [20]Natori M, Futamura Y, Tsuchiyama T, et al. Difference in recrystallization behavior between lath martensite and deformed ferrite in ultralow carbon steel[J]. Scripta Materialia, 2005, 53(5): 603-608. [21]Abedi H R, Hanzaki A Z, Liu Z, et al. Continuous dynamic recrystallization in low density steel[J]. Materials and Design, 2017, 114(1): 55-64. [22]Dudko V, Belyakov A, Kaibyshev R. Effect of tempering on mechanical properties and microstructure of a 9%Cr heat resistant steel[J]. Materials Science Forum, 2012, 706-709: 841-846. [23]Kipelova A, Kaibyshev R, Belyakov A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions[J]. Advanced Materials Research, 2011, 89-91(3): 295-300. [24]Tsuchiyama T, Miyamoto Y, Takaki S. Recrystallization of lath martensite with bulge nucleation and growth mechanism[J]. ISIJ International, 2001, 41(9): 1047-1052. |