[1]Zhu J, Zhang Z, Xie J. Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism[J]. Materials Science and Engineering A, 2019, 752(3): 101-114. [2]吴方俊, 邓小云, 揭晓华, 等. 热作模具用H13和Dievar钢的热疲劳性能[J]. 金属热处理, 2022, 47(3): 165-172. Wu Fangjun, Deng Xiaoyun, Jie Xiaohua, et al. Thermal fatigue properties of H13 and Dievar steels for hot-work die[J]. Heat Treatment of Metals, 2022, 47(3): 165-172. [3]Gronostajski Z, Kaszuba M, Polak S, et al. The failure mechanisms of hot forging dies[J]. Materials Science and Engineering, 2016, 657: 147-160. [4]张 旭, 何文超, 魏鑫鸿, 等. 深冷处理对H13钢组织和热疲劳性能的影响[J]. 金属热处理, 2021, 46(10): 81-85. Zhang Xu, He Wenchao, Wei Xinhong, et al. Effect of cryogenic treatment on microstructure and thermal fatigue properties of H13 steel[J]. Heat Treatment of Metals, 2021, 46(10): 81-85. [5]杨成康, 程晓农, 张 洁, 等. W-Mo-V改进型H13模具钢的力学性能与磨损行为[J]. 金属热处理, 2021, 46(4): 30-36. Yang Chengkang, Cheng Xiaonong, Zhang Jie, et al. Mechanical properties and wear behavior of W-Mo-V improved H13 die steel[J]. Heat Treatment of Metals, 2021, 46(4): 30-36. [6]Chen C R, Wang Y, Ou H G, et al. A review on remanufacture of dies and moulds[J]. Journal of Cleaner Production, 2014, 64: 13-23. [7]夏玉峰, 滕海灏, 廖海龙, 等. 热锻模具电弧增材再制造技术研究进展[J]. 材料热处理学报, 2021, 42(8): 1-13. Xia Yufeng, Teng Haihao, Liao Hailong, et al. Research progress of wire arc additive remanufacturing technology for hot forging die[J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 1-13. [8]Zhang J S, Zhou J, Wang Q Y, et al. Process planning of automatic wire arc additive remanufacturing for hot forging die[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(6): 1613-1623. [9]Hawryluk M. Review of selected methods of increasing the life of forging tools in hot die forging processes[J]. Archives of Civil and Mechanical Engineering, 2016, 16: 845-866. [10]Hackenhaar W, Mazzaferro J, Mazzaferro C, et al. Effects of different WAAM current deposition modes on the mechanical properties of AISI H13 tool steel[J]. Welding in the World, 2022, 66(11): 2259-2269. [11]杨 伟, 曾大新, 刘建永, 等. 激光熔覆H13钢的裂纹敏感性及形成机理[J]. 金属热处理, 2020, 45(6): 206-211. Yang Wei, Zeng Daxin, Liu Jianyong, et al. Crack sensitivity and formation mechanism of laser clad H13 steel[J]. Heat Treatment of Metals, 2020, 45(6): 206-211. [12]吕 彦, 余圣莆, 行舒乐, 等. 钼、镍含量对马氏体不锈钢硬面药芯焊丝堆焊层组织和性能的影响[J]. 机械工程材料, 2013, 37 (9): 29-32. Lü Yan, Yu Shengpu, Xing Shule, et al. Effect of Mo and Ni contents on microstructure and properties of deposited metal prepared by martensitic stainless hard-facing flux-cored wire[J]. Materials for Mechanical Engineering, 2013, 37(9): 29-32. [13]Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 2016, 83: 882-890. [14]Xiong Y B, Wen D H, Zheng Z Z, et al. Effect of interlayer temperature on microstructure evolution and mechanical performance of wire arc additive manufactured 300M steel[J]. Materials Science and Engineering A, 2021, 831: 142351. [15]Krell J, Roettger A, Geenen K, et al. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting[J]. Journal of Materials Processing Technology, 2018, 255: 679-688. [16]Harwarth M, Brauer A, Huang Q L, et al. Influence of carbon on the microstructure evolution and hardness of Fe-13Cr-xC(x=0-0.7wt.%) stainless steel[J]. Materials, 2021, 14(17): 5063. [17]Lyu Z, Sato Y S, Tokita S, et al. Microstructural evolution in a thin wall of 2Cr13 martensitic stainless steel during wire arc additive manufacturing[J]. Materials Characterization, 2021, 182: 111520. [18]刘正东, 程世长, 包汉生, 等. 高铬马氏体耐热钢中δ铁素体形成及影响因素[J]. 材料热处理学报, 2010, 31(11): 61-67. Liu Zhengdong, Cheng Shichang, Bao Hansheng, et al. Formation and influence factors of δ ferrite in high Cr martensitic heat resistant steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(11): 61-67. [19]Kim H, Inoue J, Okada M, et al. Prediction of Ac3 and martensite start temperatures by a data-driven model selection approach[J]. ISIJ International, 2017, 57(12): 2229-2236. [20]石如星, 刘正东. P92耐热钢δ-铁素体内的析出相[J]. 材料热处理学报, 2011, 32(11): 64-67. Shi Ruxing, Liu Zhengdong. Precipitated phase in δ-ferrite of P92 heat-resistant steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(11): 64-67. [21]郭 硕, 樊振宇, 王会珍, 等. H13钢相变规律及其模具的真空热处理数值模拟[J]. 金属热处理, 2022, 47(5): 71-75. Guo Shuo, Fan Zhenyu, Wang Huizhen, et al. Phase transformation law of H13 steel and numerical simulation of vacuum heat treatment for dies[J]. Heat Treatment of Metals, 2022, 47(5): 71-75. [22]李晓丹, 倪家强, 殷 俊, 等. 激光沉积Ti65显微组织与各向异性研究[J]. 中国激光, 2023, 50(8): 0802305. Li Xiaodan, Ni Jiaqiang, Yin Jun, et al. Microstructure and anisotropy of laser-deposited Ti65 titanium alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802305. |