[1]伍倪燕. 热处理对机床主轴用40Cr、65Mn钢力学性能的影响[J]. 制造技术与机床, 2016(2): 75-78. Wu Niyan. Effects of heat treatment on the mechanical properties of 40Cr steel and 65Mn steel used in machine tool spindle[J]. Manufacturing Technology and Machine Tool, 2016(2): 75-78. [2]傅 璞. 40Cr热处理工艺及其组织与性能[J]. 机械工程与自动化, 2005(5): 110-111, 114. Fu Pu. 40Cr heat treatment craft and its structure and function[J]. Mechanical Engineering and Automation, 2005(5): 110-111, 114. [3]杨在志. 热处理工艺对40Cr钢组织性能的影响[J]. 钢结构, 2008(1): 16-17, 52. Yang Zaizhi. Effect of microstructure and properties to 40Cr steel for different heat treatment technologies[J]. Steel Construction, 2008(1): 16-17, 52. [4]徐 杨, 宋仁伯, 杨富强, 等. 拉丝机塔轮轴用40Cr钢热处理工艺优化[J]. 金属热处理, 2015, 40(6): 73-79. Xu Yang, Song Renbo, Yang Fuqiang, et al. Optimization of heat treatment of 40Cr steel for wire drawing machine tower axle[J]. Heat Treatment of Metals, 2015, 40(6): 73-79. [5]李光辉, 谭峰亮, 李鸿娟. 淬火工艺参数对40Cr合金钢组织性能的影响[J]. 轧钢, 2018, 35(5): 12-16. Li Guanghui, Tan Fengliang, Li Hongjuan. Effect of quenching process parameter on microstructures and properties of 40Cr alloy steel[J]. Steel Rolling, 2018, 35(5): 12-16. [6]周丽娜, 刘 明, 高 翔, 等. 奥氏体化过程对Cr14Mo4V高温轴承钢微观组织的影响[J]. 金属热处理, 2022, 47(8): 7-15. Zhou Lina, Liu Ming, Gao Xiang, et al. Effect of austenitizing process on microstructure of Cr14Mo4V high temperature bearing steel[J]. Heat Treatment of Metals, 2022, 47(8): 7-15. [7]郝少花, 曹亮亮, 秦凤婷. 40Cr轴叉表面开裂原因分析及改进措施研究[J]. 济源职业技术学院学报, 2019, 18(2): 86-92. Hao Shaohua, Cao Liangliang, Qin Fengting. Analysis on causes and improvement measures of surface crack of 40Cr spindle fork[J]. Journal of Jiyuan Vocational and Technical College, 2019, 18(2): 86-92. [8]蒋佩华, 王 慧, 许宗凡, 等. 40Cr螺栓断裂原因分析[J]. 钢铁研究, 2013, 41(4): 37-38. Jiang Peihua, Wang Hui, Xu Zongfan, et al. Analysis on fracture reason of 40Cr screw[J]. Research on Iron and steel, 2013, 41(4): 37-38. [9]张学忠, 刘建生, 何文武, 等. 加热工艺参数对12%Cr钢晶粒长大行为的影响[J]. 金属热处理, 2020, 45(9): 77-80. Zhang Xuezhong, Liu Jiansheng, He Wenwu, et al. Effect of heating parameters on grain growth behavior of 12%Cr steel[J]. Heat Treatment of Metals, 2020, 45(9): 77-80. [10]杨丽霞, 马龙腾, 陈正宗, 等. 9Cr-3W-3Co耐热钢奥氏体晶粒长大行为[J]. 金属热处理, 2018, 43(9): 84-88. Yang Lixia, Ma Longteng, Chen Zhengzong, et al. Austenite grain growth behavior of 9Cr-3W-3Co heat-resistant steel[J]. Heat Treatment of Metals, 2018, 43(9): 84-88. [11]邹 磊, 侯 奎, 孙清汝, 等. 绿色热处理的探讨[J]. 金属加工(热加工), 2018(6): 7-13. Zou Lei, Hou Kui, Sun Qingru, et al. Discussion on green heat treatment[J]. MW Metal Forming, 2018(6): 7-13. [12]吴培桂, 陈莹莹, 张光钧. 绿色热处理工艺—激光热处理[J]. 金属热处理, 2010, 35(12): 29-33. Wu Peigui, Chen Yingying, Zhang Guangjun. Green heat treatment-laser heat treatment process[J]. Heat Treatment of Metals, 2010, 35(12): 29-33. [13]田 华. 感应回火工艺研究[J]. 热处理, 2022, 37(2): 19-22. Tian Hua. Research on induction tempering technology[J]. Heat Treatment, 2022, 37(2): 19-22. [14]刘亚飞. 不同回火工艺对Q345B钢组织与性能的影响[J]. 铸造技术, 2017, 38(6): 1325-1327. Liu Yafei. Effect of different tempering process on microstructure and mechanical performances of Q345B steel[J]. Foundry Technology, 2017, 38(6): 1325-1327. [15]吴 辉, 林升垚, 李新凯, 等. 感应淬火对42CrMo钢曲轴连杆轴颈组织性能的影响[J]. 金属热处理, 2022, 47(2): 119-124. Wu Hui, Lin Shenyao, Li Xinkai, et al. Effect of induction hardening on microstructure and properties of 42CrMo steel cranks shaft connecting rod journal[J]. Heat Treatment of Metals, 2022, 47(2): 119-124. [16]孔春花. 感应热处理新工艺技术开发与应用研究[J]. 金属加工(热加工), 2021(9): 1-4. Kong Chunhua. Research on induction heating treatment new process technology design and application[J]. MW Metal Forming, 2021(9): 1-4. [17]孙增忠. 浅谈感应淬火实际应用[J]. 机械设计与制造工程, 2014, 43(3): 83-85. Sun Zengzhong. Introduction to application of the induction hardening[J]. Machine Design and Manufacturing Engineering, 2014, 43(3): 83-85. [18]康学勤, 许正茂, 林恩波, 等. “零保温”淬火工艺对40Cr钢组织与性能的影响[J]. 金属热处理, 2020, 45(8): 105-107. Kang Xueqin, Xu Zhengmao, Lin Enbo, et al. Effect of quenching without holding on microstructure and mechanical properties of 40Cr steel[J]. Heat Treatment of Metals, 2020, 45(8): 105-107. [19]李安铭, 呼梦娟. 零保温奥氏体逆相变淬火温度对40Cr钢组织性能的影响[J]. 煤炭学报, 2010, 35(8): 1391-1394. Li Anming, Hu Mengjuan. The influence of the austenite inverse phase transformation quenching temperature in zero time holding on microstructure and property of 40Cr steel[J]. Journal of China Coal Society, 2010, 35(8): 1391-1394. [20]韩海军. 关于锻后余热热处理的认知[J]. 山西冶金, 2016, 39(6): 39-40, 95. Han Haijun. Analysis on heat treatment process of afterheat utilization[J]. Shanxi Metallurgy, 2016, 39(6): 39-40, 95. [21]顾宏才. 热处理工艺对40Cr钢的性能影响对比分析[J]. 兰州工业学院学报, 2021, 28(6): 62-66. Gu Hongcai. Comparative analysis of influence of heat treatment process on properties of 40Cr steel[J]. Journal of Lanzhou Institute of Technology, 2021, 28(6): 62-66. [22]杜 畅, 毕庆霞, 宫新勇, 等. 基于亚温淬火的40Cr强韧化处理[J]. 煤矿机械, 2019, 40(11): 94-96. Du Chang, Bi Qingxia, Gong Xinyong, et al. Strengthening and toughening treatment of 40Cr based on subcritical quenching[J]. Coal Mine Machinery, 2019, 40(11): 94-96. [23]覃展鹏, 王红鸿, 童 志, 等. 亚温淬火工艺对低碳低合金高强钢组织及性能的影响[J]. 材料热处理学报, 2017, 38(9): 142-147. Qin Zhanpeng, Wang Honghong, Tong Zhi, et al. Influence of lamellarizing process on microstructure and properties of low carbon low alloy high-strength steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(9): 142-147. [24]应俊龙, 张 瑜, 赵兴德, 等. 亚温淬火对45钢组织和力学性能的影响[J]. 热加工工艺, 2018, 47(14): 172-175. Ying Junlong, Zhang Yu, Zhao Xingde, et al. Effects of intercritical quenching on microstructure and mechanical properties of 45 steel[J]. Hot Working Technology, 2018, 47(14): 172-175. [25]张红英, 黄法平. 感应加热工艺参数对40Cr钢淬火组织和硬化层深度的影响[J]. 热处理, 2015, 30(5): 11-14. Zhang Hongying, Huang Faping. Influence of process parameters on microstructure and hardened depth of 40Cr steel induction hardened[J]. Heat Treatment, 2015, 30(5): 11-14. |