[1]邝春福, 张深根, 李 俊, 等. 烘烤硬化钢板的研究进展[J]. 材料导报, 2013, 27(9): 92-95. Kuang Chunfu, Zhang Shengen, Li Jun, et al. Research process on bake hardenable steel sheet[J]. Materials Reports, 2013, 27(9): 92-95. [2]Baker L J, Parker J D, Daniel S R. Principle of bake-hardening of Ti-Nb ultra-low-carbon steel[J]. Materials Science and Technology, 2002, 18(5): 541. [3]高洪刚, 康海军. 连续退火工艺对冷轧烘烤硬化钢组织性能的影响[J]. 轧钢, 2018, 35(2): 42-44, 84. Gao Honggang, Kang Haijun. Influence of continuous annealing process on cold rolled BH steel properties[J]. Steel Rolling, 2018, 35(2): 42-44. [4]Opiela M, Fojt-Dymara G, Grajcar A, et al. Effect of grain size on the microstructure and strain hardening behavior of solution heat-treated low-C high-Mn steel[J]. Materials, 2020, 13(7): 1489. [5]De Meira R R, Dias F M D S, Lins J F C. The influence of manganese on the bake hardening of hot dip galvanized low carbon steels[J]. Journal of Materials Research and Technology, 2020, 9(2): 2208-2213. [6]Cho W, Jeong B S, Shin E, et al. Bake hardening and uniaxial tensile behavior in a low carbon steel accompanying inhomogeneous plastic yielding[J]. Materials Science and Engineering A, 2022, 856: 144004. [7]付 豪, 李维娟, 刘 洋, 等. 低碳钢烘烤硬化中C元素晶界的偏聚[J]. 辽宁科技大学学报, 2015, 38(2): 98-103. Fu Hao, Li Weijuan, Liu Yang, et al. Study on grain boundary segregation of carbon in bake hardening for low carbon steel[J]. Journal of University of Science and Technology Liaoning, 2015, 38(2): 98-103. [8]胡学文, 陈继平, 康永林, 等. 超低碳BH钢的应变时效行为和烘烤硬化规律[J]. 金属热处理, 2019, 44(2): 30-34. Hu Xuewen, Chen Jiping, Kang Yonglin, et al. Strain aging behavior and baking hardening law of ultra-low carbon BH steel[J]. Heat Treatment of Metals, 2019, 44(2): 30-34. [9]Liu T, Hou H, Zhang X, et al. Effects of prestrain and grain boundary segregation of impurity atoms on bake hardening behaviors of Ti+V-bearing ultra-low carbon bake hardening steel[J]. Materials Science and Engineering A, 2018, 726: 160-168. [10]韩 荣, 刘洪喜, 尉文超, 等. Ti-V-Mo微合金化22MnB5钢中析出相及其强化作用[J]. 钢铁, 2022, 57(2): 127-138. Han Rong, Liu Hongxi, Yu Wenchao, et al. Precipitates and their strengthening in Ti-V-Mo microalloyed 22MnB5 steel[J]. Iron and Steel, 2022, 57(2): 127-138. [11]Song M, Kim J. Microstructural evolution at the initial stage of two-step aging in an Al-Mg-Si alloy characterized by a three dimensional atom probe[J]. Materials Science and Engineering A, 2021, 815: 141301. [12]Gray V, Galvin D, Hill P, et al. Impact of targeted chemistries on maraging steel precipitation evolution observed using SANS and APT[J]. Materials Characterization, 2018, 139: 208-220. [13]Oh J C, Ohkubo T, Mukai T, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy[J]. Scripta Materialia, 2005, 53(6): 675-679. [14]韩文妥, 贺建超, 万发荣. ODS钢晶界偏析的三维原子探针分析[J]. 材料热处理学报, 2019, 40(11): 130-134. Han Wentuo, He Jianchao, Wan Farong. School of Materials Science and Engineering[J]. Transactions of Materials and Heat Treatment, 2019, 40(11): 130-134. |