[1]Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006: 123-136. [2]Gu Y, Harada H, Cui C, et al. New Ni-Co-base disk superalloys with higher strength and creep resistance[J]. Scripta Materialia, 2006, 55(9): 815-818. [3]Liu P, Zhang R, Yuan Y, et al. Hot deformation behavior and workability of a Ni-Co based superalloy[J]. Journal of Alloys and Compounds, 2020, 831: 154618. [4]Jackson M P, Reed R C. Heat treatment of UDIMET 720Li the effect of microstructure on properties[J]. Material Science Engineering A, 1999, 259: 85-97. [5]Larrouy B. Grain boundary-slip bands interactions impact on the fatigue crack initiation in a polycrystalline forged Ni based superalloy[J]. Acta Materialia, 2015, 99: 325-336. [6]Mazière M. Overspeed burst of elastoviscoplastic rotating disks -Part I: Analytical and numerical stability analyses[J]. European Journal of Mechanics A, 2009, 44: 28-36. [7]Telesman J, Gabb T P, Garg A, et al. Effect of microstructure on time dependent fatigue crack growth behavior in a P/M turbine disk alloy[J]. Superalloys, 2008: 807-816. [8]Rémi Giraud, Zéline Hervier, Jonathan Cormie, et al. Strain effect on the γ′ dissolution at high temperatures of a nickel-based single crystal superalloy[J]. Metallurgical and Materials Transactions A, 2013, 44(1): 131-146. [9]Shahriari D, Sadeghi M H, Akbarzadeh A, et al. The influence of heat treatment and hot deformation conditions on γ′ precipitate dissolution of Nimonic 115 superalloy[J]. International Journal of Advanced Manufacturing Technology, 2009, 45(9/10): 841. [10]Cormier J, Milhet X, Mendez J. Effect of very high temperature short exposures on the dissolution of the γ′ phase in single crystal MC2 superalloy[J]. Journal of Materials Science, 2007, 42: 7780-7786. [11]Shahriari D, Sadeghi M H, Akbarzadeh A. γ′ precipitate dissolution during heat treatment of Nimonic 115 superalloy[J]. Advanced Manufacturing Processes, 2009, 24(5): 559-563. [12]Cui C Y, Gu Y F, Ping D H, et al. Microstructural evolution and mechanical properties of a Ni-based superalloy, TMW-4[J]. Metallurgical and Materials Transactions A, 2009, 40: 282-291. [13]Semiatin S L, Levkulich N C, Saurber A E, et al. The kinetics of precipitate dissolution in a nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2017, 48: 5567-5578. [14]Wan Z P, Hu L X, Sun Y, et al. Effect of solution treatment on microstructure and tensile properties of a U720LI Ni-based superalloy[J]. Vacuum, 2018, 156: 248-255. [15]张冬梅, 国振兴, 邰清安, 等. 固溶温度对GH2787合金组织性能的影响[J]. 材料与冶金学报, 2016, 15(3): 220-224. Zhang Dongmei, Guo Zhenxing, Tai Qing'an, et al. Influence of solid solution temperature on microstructures and properties for a GH2787 alloy[J]. Journal of Materials and Metallurgy, 2016, 15(3): 220-224. [16]Devaux A, Picque B, Gervais1 M F, et al. AD730TM-A new nickel-based superalloy for high temperature engine rotative parts[J]. Superalloys, 2012, 2012: 911-919. [17]Vaunois J R, Cormier J, Villechaise P, et al. Influence of both γ′ Distribution and Grain Size on the Tensile Properties of UDIMET 720Li at Room Temperature[M]. PA: John Wiley and Sons Inc, 2010. [18]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000. [19]Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: The effect of microstructure on properties[J]. Materials Science and Engineering A, 1999, 259(1): 85-97. [20]Thompson A W. Calculation of true volume grain diameter[J]. Metallagraphy, 1972, 5(4): 366-369. [21]谢 君. 热处理对FGH95镍基合金组织结构与蠕变行为的影响[D]. 沈阳: 沈阳工业大学, 2014. |